CS 2 | #6: Lifecycle of Classes Bringing Concepts Together: .
2’ ‘5 January 28, 2018 - Fagen-Ulmschneider, Zilles How many times do our different joinCubes files call each constructor?

By Value | By Pointer | By Reference

Copy Constructor
When a non-primitive variable is passed/returned by value, a copy Cube ()
must be made. As with a constructor, an automatic copy constructor

is provided for you if you choose not to define one:
Cube (double)

All copy constructors will:

Cube (const Cube &)

The automatic copy constructor:

1.
Cubes Unite!

2. Consider a Tower made of three Cubes:
To define a custom copy constructor: Tower.h
1 | #pragma once
cs225/Cube.h 2
4 | class Cube { 3 | #include "cs225/Cube.h"
5 public: 4 | using ¢s225: :Cube;
6 Cube () ; // default ctor 5
7 Cube (double length); // l-param ctor 6 | class Tower {
8 7 public:
9 8 Tower (Cube c, Cube *ptr, const Cube &ref);
10 double getVolume () ; 9 Tower (const Tower & other) ;
11 double getSurfaceArea(); 10
12 11 private:
13 private: 12 Cube cube ;
14 double length_; 13 Cube *ptr_;
15| }; 14 const Cube &ref ;
15 1};
Recall the joinCubes function: Automatic Copy Constructor Behavior:
joinCubes- {byValue,byReference,byPointer} .cpp The behavior of the automatic copy constructor is to make a copy of
15 [Cube joinCubes (Cube ___ cl, Cube ___ c2) { every variable. We can mimic this behavior in our Tower class:
16 double totalVolume = cl.getVolume() + c2.getVolume() ;
17 Tower.cpp
18 double newlength = std::pow(totalVolume, 1.0/3.0); 10 | Tower: :Tower (const Tower & other) ({
19 11 cube = other.cube_;
20 Cube result (newLength) ; 12 ptr_ = other.ptr ;
21 return result; 1 ref_ = other.ref ;
22 |) 14 |}
10 | Tower: :Tower (const Tower & other) : cube_(other.cube),
11 ptr (other.ptr), ref (other.ref) { }

...we refer to this as a because:

Deep Copy via Custom Copy Constructor:
Alternatively, a custom copy constructor can perform a deep copy:

Tower.cpp

11 | Tower: :Tower (const Tower & other) {
12 // Deep copy cube :

13
14
15
16 // Deep copy ptr_:
17
18
19
20 // Deep copy ref :
21
22
23 | }

Destructor
The last and final member function called in the lifecycle of a class is
the destructor.

Purpose of a destructor:

The automatic destructor:
1.

2.

Custom Destructor:

Overloading Operators

C++ allows custom behaviors to be defined on over 20 operators:

Arithmetic + - * / % ++ --
Bitwise & | N~ o~ L D>
Assignment =

Comparison = I= > < >= <=
Logical ' && ||

Other n o -

General Syntax:

Adding overloaded operators to Cube:

cs225/Cube.h

cs225/Cube. cpp

1 | #pragma once
2
3 | class Cube {
4 public:
/...
16
17
18
19
20
/...

10
12
13
14
15
16
17
18

/* ...

/* ...

*/

*/

cs225/Cube.h
5 | class Cube {
6 public:
7 Cube () ; // default ctor
8 Cube (double length); // l-param ctor
9 Cube (const Cube & other); // custom copy ctor
10 ~Cube () ; // destructor, or dtor
11 ...

Assignment Operator

Among all of the operators, one the assignment operator is unique:

1.

2.

CS 225 — Things To Be Doing:

UL SR

Theory Exam #1 starts this Thursday, covers through today
. MP1 due tonight; grace period until Tuesday @ 11:59pm

MP2 released on Tuesday (start early for extra credit!)

Lab Extra Credit »> Attendance in your registered lab section!
Daily POTDs every M-F for daily extra credit!

