

#6: Lifecycle of Classes
January 28, 2018 · Fagen-Ulmschneider, Zilles

Copy Constructor
When a non-primitive variable is passed/returned by value, a copy
must be made. As with a constructor, an automatic copy constructor
is provided for you if you choose not to define one:

All copy constructors will:

The automatic copy constructor:

1.

2.

To define a custom copy constructor:

cs225/Cube.h
4
5
6
7
8
9
10
11
12
13
14
15

class Cube {
 public:
 Cube(); // default ctor
 Cube(double length); // 1-param ctor

 double getVolume();
 double getSurfaceArea();

 private:
 double length_;
};

Recall the joinCubes function:

joinCubes-{byValue,byReference,byPointer}.cpp
15
16
17
18
19
20
21
22

Cube joinCubes(Cube ___ c1, Cube ___ c2) {
 double totalVolume = c1.getVolume() + c2.getVolume();

 double newLength = std::pow(totalVolume, 1.0/3.0);

 Cube result(newLength);
 return result;
}

Bringing Concepts Together:
How many times do our different joinCubes files call each constructor?

 By Value By Pointer By Reference

Cube()

Cube(double)

Cube(const Cube &)

Cubes Unite!
Consider a Tower made of three Cubes:

Tower.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

#pragma once

#include "cs225/Cube.h"
using cs225::Cube;

class Tower {
 public:
 Tower(Cube c, Cube *ptr, const Cube &ref);
 Tower(const Tower & other);

 private:
 Cube cube_;
 Cube *ptr_;
 const Cube &ref_;
};

Automatic Copy Constructor Behavior:
The behavior of the automatic copy constructor is to make a copy of
every variable. We can mimic this behavior in our Tower class:

Tower.cpp
10
11
12
13
14

Tower::Tower(const Tower & other) {
 cube_ = other.cube_;
 ptr_ = other.ptr_;
 ref_ = other.ref_;
}

10
11

Tower::Tower(const Tower & other) : cube_(other.cube_),
 ptr_(other.ptr_), ref_(other.ref_) { }

…we refer to this as a ______________________ because:

Deep Copy via Custom Copy Constructor:
Alternatively, a custom copy constructor can perform a deep copy:

Tower.cpp
11
12
13
14
15
16
17
18
19
20
21
22
23

Tower::Tower(const Tower & other) {
 // Deep copy cube_:

 // Deep copy ptr_:

 // Deep copy ref_:

}

Destructor
The last and final member function called in the lifecycle of a class is
the destructor.

Purpose of a destructor:

The automatic destructor:

1.

2.

Custom Destructor:

cs225/Cube.h
5
6
7
8
9
10
11

class Cube {
 public:
 Cube(); // default ctor
 Cube(double length); // 1-param ctor
 Cube(const Cube & other); // custom copy ctor
 ~Cube(); // destructor, or dtor
 ...

Overloading Operators
C++ allows custom behaviors to be defined on over 20 operators:

Arithmetic + - * / % ++ --
Bitwise & | ^ ~ << >>
Assignment =
Comparison == != > < >= <=
Logical ! && ||
Other [] () ->

General Syntax:

Adding overloaded operators to Cube:

cs225/Cube.h cs225/Cube.cpp
1
2
3
4
…
16
17
18
19
20
…

#pragma once

class Cube {
 public:
 // ...

 // ...

…
10
11
12
13
14
15
16
17
18
…

/* ... */

/* ... */

Assignment Operator
Among all of the operators, one the assignment operator is unique:

1.

2.

CS 225 – Things To Be Doing:
1. Theory Exam #1 starts this Thursday, covers through today
2. MP1 due tonight; grace period until Tuesday @ 11:59pm
3. MP2 released on Tuesday (start early for extra credit!)
4. Lab Extra Credit à Attendance in your registered lab section!
5. Daily POTDs every M-F for daily extra credit!

