CS/Z\ #7: Inheritance
2 5 January 30, 2018 - Fagen-Ulmschneider, Zilles

Destructor
The last and final member function called in the lifecycle of a class is
the destructor.

Purpose of a destructor:

The automatic destructor:

1. Like a constructor and copy constructor, an automatic
destructor exists only when no custom destructor is defined.

2. [Invoked]:

3. [Functionality]:

Custom Destructor:

Adding overloaded operators to Cube:

Cube.h Cube. cpp
1 | #pragma once VA R 74
2 40
3 | class Cube { 41
4 public: 42
o // ... 43
10 44
11 45
12 46
13 47
14 48
// ... AT

One Very Powerful Operator: Assignment Operator

Cube.h

‘Cube & operator=(const Cube & other);

Cube. cpp

‘ Cube & Cube::operator=(const Cube & other) { ... }

Cube.h

5 | class Cube {

6 public:

7 Cube () ; // default ctor

8 Cube (double length); // l-param ctor

9 Cube (const Cube & other); // custom copy ctor
10 ~Cube () ; // destructor, or dtor

11

...necessary if you need to delete any heap memory!

Overloading Operators
C++ allows custom behaviors to be defined on over 20 operators:

Arithmetic + - * [/ & 4+ --
Bitwise & | N~ < D>
Assignment =

Comparison = I= > < >= <=
Logical ' oss ||

Other 1 o ->

General Syntax:

Functionality Table:

Copies an object | Destroys an
object

Copy constructor

Assignment operator

Destructor

The Rule of Three
If it is necessary to define any one of these three functions in a class, it
will be necessary to define all three of these functions:

1.

2.

Inheritance

In nearly all object-oriented languages (including C++), classes can be
extended to build other classes. We call the class being extended the
base class and the class inheriting the functionality the derived
class.

Calling Base Class Constructors (Initializer List!)

Square.h
6 public:
7 Square (double length) ;
Square. cpp

6| Square: :Square (double length) : Shape(length) { }

Base Class: Shape

Shape.h

O oJdo Ul

10
11
12

class Shape {
public:
Shape () ;
Shape (double length) ;
double getLength() const;

private:
double length ;
}:

Functions: virtual and pure virtual
e The virtual keyword:

Cube. cpp RubikCube. cpp

Derived Class: square

Square.h
1 | #pragma once
2
3 | #include "Shape.h"
4
5 | class Square {
6 public:
7 double getArea() const;
8
9 private:
10 // Nothing!
11 |}

Cube: :print 1() { // No print 1()
cout << "Cube" << endl;
}

Cube::print 2() { RubikCube: :print_2() {
cout << "Cube" << endl; cout << "Rubik" << endl;

} }

virtual Cube::print 3() { // No print 3()

cout << "Cube" << endl;
}

In the above code, Square is derived from the base class Shape:

All public functionality of Shape is part of Square:

main.cpp

int main() {
Square sq;
sq.getLength() ; // Returns 1, the len init’d
// by Shape’s default ctor

oo JdoWn

virtual Cube::print 4() { RubikCube: :print_4() {
cout << "Cube" << endl; cout << "Rubik" << endl;
} }
// In .h file: RubikCube: :print 5() {
virtual Cube::print_5() = 0; cout << "Rubik" << endl;
}
RubikCube rc;
Cube c; RubikCube c; Cube &c = rc;
c.print 1();
c.print 2();
c.print_3();
c.print 4();
c.print 5();

CS 225 — Things To Be Doing:

[Private Members of Shape]:

1. Theory Exam #1 starts tomorrow!
2. lab_memory this week in labs (due Sunday)
3. MP2 released (EC due Monday)

4. Daily POTDs every M-F for daily extra credit!

