CS 2 #23: BTrees Great interactive visualization of BTrees:
2’ \5 March 11. 2018 - Fagen—Ulmschneider Zilles https://www.cs.usfca.edu/~galles/visualization/BTree.html
) >

BTreem

BTree Properties
‘ 3|8 |23 25 31 42 43 55 ‘ For a BTree of order m:
m=9 1. All keys within a node are ordered.
2. All leaves contain no more than m-1 keys.
Goal: Build a tree that uses /node! 3. All internal nodes have exactly one more child than keys.
...optimize the algorithm for your platform! 4. Root nodes can be a leaf or have [2, m] children.
5. All non-root, internal nodes have [ceil(m/2), m] children.
A BTree of order m is an m-way tree where: 6. Allleaves are on the same level.
1. All keys within a node are ordered.
Example BTree

BTree Insert, using m=5 /E\
/%i\ /%iK

1‘2‘ 6‘7 ‘12‘14 16‘ 25 26‘ 29‘45“52‘53 55‘68

~-when a BTree node reaches m keys: What properties do we know about this BTree?

BTree Insert, m=3:

BTree Search

23 | 42

-3 8 25‘31‘ 43‘55‘

BTree.hpp Proof:
182 bool ?trezﬂ_" V>::_exists(BTreeNode & node, const K & key) { 1a. The minimum number of nodes for a BTree of order m at each
unsigned i; . .
102 for (i=0; i < node.keys_ct_ && key < node.keys [i]; i++) { } level 1s as fOllOWS.
103
104 if (i < node.keys_ct && key == node.keys [i]) { root:
105 return true; :
106 }
107 level 1:
108 if (node.isLeaf()) {
109 return false;
110 } else { level 2:
111 BTreeNode nextChild = node._fetchChild (i) ;
112 return _exists(nextChild, key); .
113 } level 3:
114 }
level h:
BTree Analysis

The height of the BTree determines maximum number of
possible in search data.

1b. The minimum total number of nodes is the sum of all levels:
...and the height of our structure:

Therefore, the number of seeks is no more than:

...suppose we want to prove this!

2. The minimum number of keys:
BTree Proof #1

In our AVL Analysis, we saw finding an upper bound on the height
(h given n, aka h = f(n)) is the same as finding a lower bound on
the keys (n given h, aka f1(h)).

Goal: We want to find a relationship for BTrees between the number

of keys (n) and the height (h).
3. Finally, we show an upper-bound on height:
BTree Strategy:
1. Define a function that counts the minimum number of nodes
in a BTree of a given order.

a. Account for the minimum number of keys per node. CS 225 — Things To Be Doing:
2. Proving a minimum number of nodes provides us with an]
upper-bound for the maximum possible height. 1. Programming Exam B starts on Tuesday

2. MP4 is due tonight by 11:59pm; MP5 released Tuesday
3. lab_btree released on Wednesday
4. Daily POTDs are ongoing!

