

#25: BTree Analysis + Hashing
March 13, 2018 · Fagen-Ulmschneider, Zilles

BTree Properties

For a BTree of order m:
1. All keys within a node are ordered.
2. All leaves contain no more than m-1 nodes.

3. All internal nodes have exactly one more child than key.
4. Root nodes can be a leaf or have [2, m] children.
5. All non-root, internal nodes have [ceil(m/2), m] children.

6. All leaves are on the same level.

BTree Proof #1
In our AVL Analysis, we saw finding an upper bound on the height
(h given n, aka h = f(n)) is the same as finding a lower bound on
the keys (n given h, aka f-1(h)).

Goal: We want to find a relationship for BTrees between the number
of keys (n) and the height (h).

BTree Strategy:

1. Define a function that counts the minimum number of nodes
in a BTree of a given order.

a. Account for the minimum number of keys per node.
2. Proving a minimum number of nodes provides us with an

upper-bound for the maximum possible height.
Proof:
1a. The minimum number of nodes for a BTree of order m at each
level is as follows:

 root:

 level 1:

 level 2:

 level 3:
 …
 level h:

1b. The minimum total number of nodes is the sum of all levels:

2. The minimum number of keys:

3. Finally, we show an upper-bound on height:

So, how good are BTrees?
Given a BTree of order 101, how much can we store in a tree of
height=4?

 Minimum:

 Maximum:

Goals for Understanding Hashing:
1. We will define a keyspace, a

(mathematical) description of the
keys for a set of data.

2. We will define a function used to
map the keyspace into a small
set of integers.

All hash tables consists of three things:

1.

2.

3.

A Perfect Hash Function

…characteristics of this function?

A Second Hash Function

…characteristics of this function?

All hash functions will consist of two parts:

• A hash:

• A compression:

Characteristics of a good hash function:

1. Computation Time:

2. Deterministic:

3. SUHA:

Towards a general-purpose hashing function:
It is easy to create a general-purpose hashing function when the
keyspace is proportional to the table size:

• Ex: Professors at CS@Illinois
• Ex: Anything you can reason about every possible value

It is difficult to create a general-purpose hashing function when the
keyspace is large:

CS 225 – Things To Be Doing:

1. Programming Exam B is live!
2. MP5 has been released; EC+7 deadline is Monday back from break
3. lab_btree released today
4. Daily POTDs are ongoing!

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

