CS 225

Data Structures

Feb. 27 — AVL Trees

Wade Fagen-Ulmschneider

Left Rotation

BST Rotation Summary

- Four kinds of rotations (L, R, LR, RL)

- All rotations are local (subtrees are not impacted)
- All rotations are constant time: O(1)

- BST property maintained

GOAL:

We call these trees:

AVL Trees

Three issues for consideration:
- Rotations

- Maintaining Height

- Detecting Imbalance

AVL Tree Rotations

Four templates for rotations:

N4

Finding the Rotation

Finding the Rotation If an insertion occurred in
subtrees t; or t; and a subtree

was detected at t:

t

Finding the Rotation

Finding the Rotation

Finding the Rotation

Finding the Rotation

t

Theorem:

If an insertion occurred in subtrees
t, or t, and a subtree was detected
at t, then a rotation
about t restores the balance of the
tree.

We gauge this by noting the balance
factor of t->right is

Example:

Finding the Rotation

t

&A

Theorem:

If an insertion occurred in
subtrees t, or t; and a subtree
was detected at t:

t

Finding the Rotation

t

A

Finding the Rotation

Theorem:

If an insertion occurred in subtrees
t, or t; and a subtree was detected
at t, then a rotation
about t restores the balance of the

a tree.

We gauge this by noting the balance
factor of t->right is

t

_insert(6.5)

Insertion into an AVL Tree

struct TreeNode {
T key;

unsigned height;

TreeNode *left;
TreeNode *right;

o L1 WDN R

iy

_insert(6.5)

Insertion into an AVL Tree

Insert (pseudo code):

1: Insert at proper place

2: Check for imbalance

3: Rotate, if necessary

4: Update height °

struct TreeNode {
T key;

unsigned height;

TreeNode *left;
TreeNode *right;

o L1 WDN R

iy

151
152

153
157
160
166
167

template <typename K, typename V>

void AVI<K, D>:: insert(const K & key, const V & data, TreeNode

*& cur) {
if (cur == NULL) { cur = new TreeNode (key, data) ; }
else if (key < cur->key) { _insert(key, data, cur->left); }
else if (key > cur->key) { _insert(key, data, cur->right)}
_ensureBalance (cur) ;

}

119
120
121
122
123
124
125
126

127
128
129
130

131
132
133
134
135
136

template <typename K, typename V>
void AVI<K, D>:: ensureBalance (TreeNode *& cur) ({
// Calculate the balance factor:
int balance = height (cur->right) - height (cur->left);

// Check if the node is current not in balance:
if (balance == -2) {
int 1 balance =
height (cur->left->right) - height (cur->left->left);
if (1 balance == -1) { 7o}
else { ;)
} else if (balance == 2) {
int r balance =

height (cur->right->right) - height (cur->right->left);

if(r balance == 1) { ;o)
else { ;o)
}
_updateHeight (cur) ;

};

SRolohS
olollolNC

AVL Tree Analysis

We know: insert, remove and find runs in:

We will argue that: h =

AVL Tree Analysis
Definition of big-O:

...0r, with pictures:

A

