CS 225

Data Structures

April 1 — Heap Analysis and Disjoint Sets Wade Fagen-Ulmschneider, Craig Zilles

buildHeap

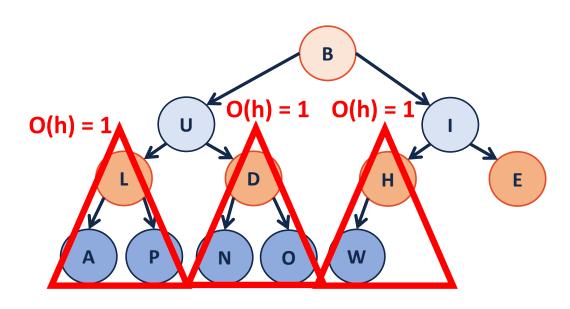
1. Sort the array – it's a heap!

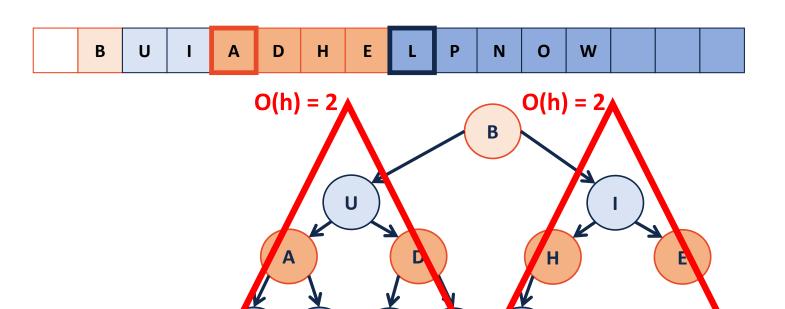
U

```
1  template <class T>
    void Heap<T>::buildHeap() {
        for (unsigned i = parent(size); i > 0; i--) {
            heapifyDown(i);
        }
        }
     }
}
```

B U I L D H E A P N O W

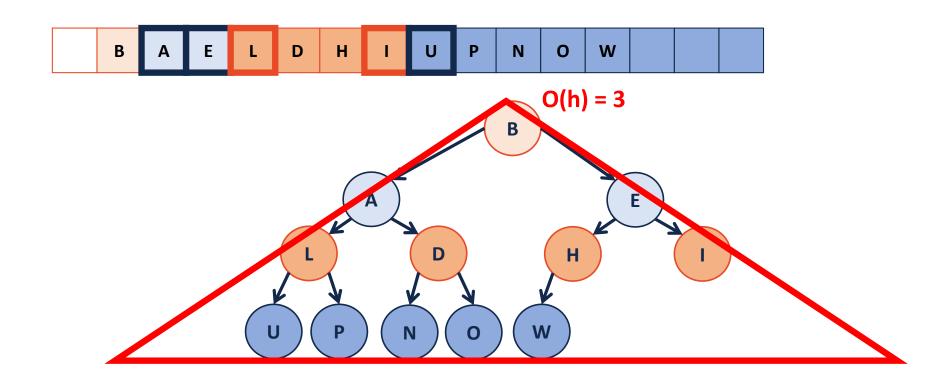
В	U	ı	L	D	н	E	Α	Р	N	0	W		
													1

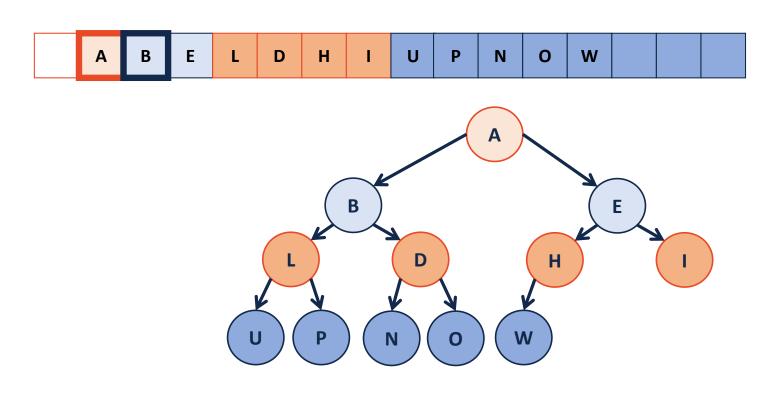




N

0





A B E L D H I U P N O W

Theorem: The running time of buildHeap on array of size n
is:
Strategy:
-
-

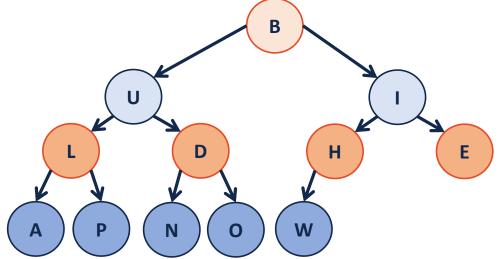
S(h): Sum of the heights of all nodes in a complete tree of height **h**.

ricigiit ii

$$S(0) =$$

$$S(1) =$$

$$S(h) =$$



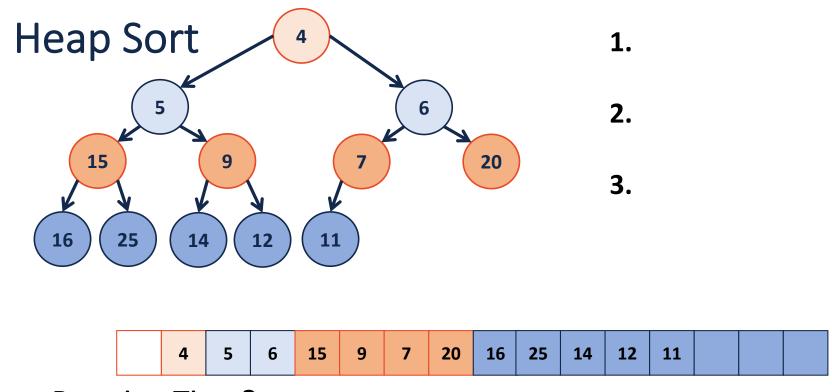
Proof the recurrence:

Base Case:

General Case:

```
From S(h) to RunningTime(n):
   S(h):

Since h ≤ lg(n):
   RunningTime(n) ≤
```



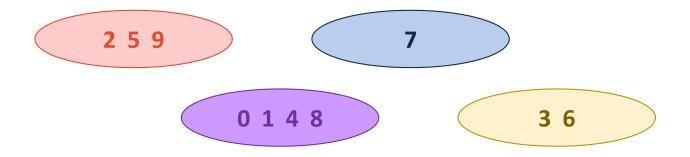
Running Time?

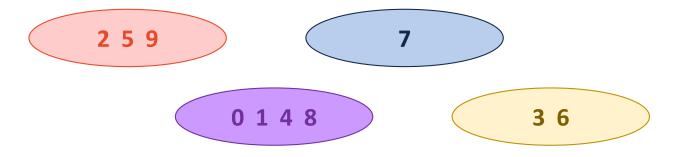
Why do we care about another sort?

A(nother) throwback to CS 173...

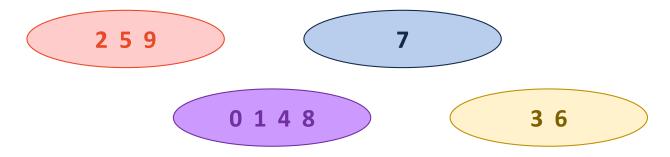
Let **R** be an equivalence relation on us where $(s, t) \in R$ if s and t have the same favorite among:

{ ____, ____, ____, }

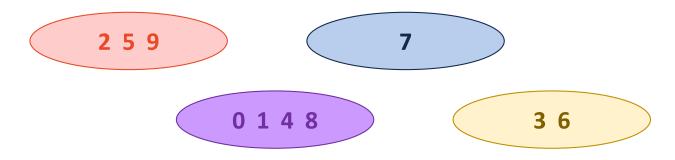




Operation: find(4)

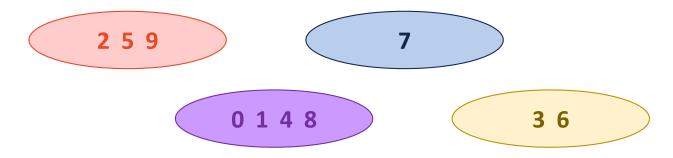


Operation: find(4) == find(8)



Operation:

```
if ( find(2) != find(7) ) {
    union( find(2), find(7) );
}
```



Key Ideas:

- Each element exists in exactly one set.
- Every set is an equitant representation.
 - Mathematically: $4 \in [0]_R \rightarrow 8 \in [0]_R$
 - Programmatically: find(4) == find(8)

Disjoint Sets ADT

- Maintain a collection $S = \{s_0, s_1, ... s_k\}$
- Each set has a representative member.

```
• API: void makeSet(const T & t);
    void union(const T & k1, const T & k2);
    T & find(const T & k);
```

Implementation #1

0	1	2	3	4	5	6	7
0	0	2	3	0	3	3	2

Find(k):

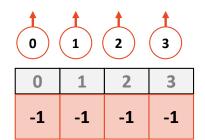
Union(k1, k2):

Implementation #2

- We will continue to use an array where the index is the key
- The value of the array is:
 - -1, if we have found the representative element
 - The index of the parent, if we haven't found the rep. element
- We will call theses **UpTrees**:

0	1	2	3
0	1	2	3
-1	-1	-1	-1

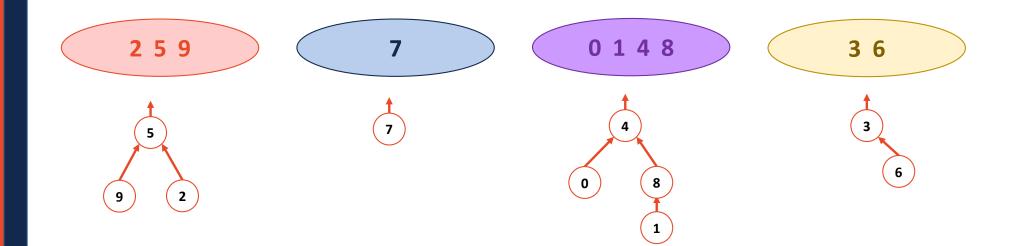
UpTrees



0	1	2	3

0	1	2	3

0	1	2	3



0	1	2	3	4	5	6	7	8	9
4	8	5	6	-1	-1	-1	-1	4	5

Disjoint Sets Find

```
1 int DisjointSets::find() {
2   if ( s[i] < 0 ) { return i; }
3   else { return _find( s[i] ); }
4 }</pre>
```

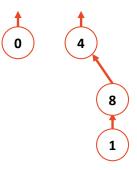
Running time?

What is the ideal UpTree?

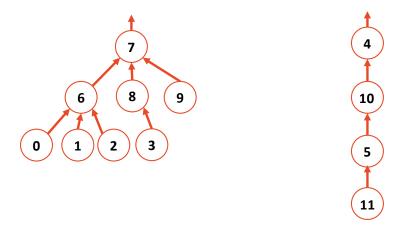
Disjoint Sets Union

```
void DisjointSets::union(int r1, int r2) {

your properties and properties are properties a
```

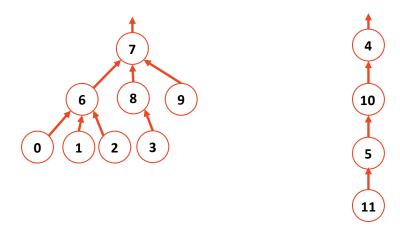


Disjoint Sets – Union



0	1	2	3	4	5	6	7	8	9	10	11
6	6	6	8	-1	10	7	-1	7	7	4	5

Disjoint Sets – Smart Union

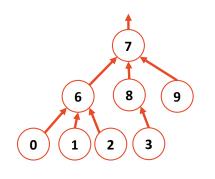


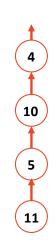
Union by height

0	1	2	3	4	5	6	7	8	9	10	11
6	6	6	8		10	7		7	7	4	5

Idea: Keep the height of the tree as small as possible.

Disjoint Sets – Smart Union





Union by height

٥												
	6	6	6	8		10	7		7	7	4	5
	0	1	2	3	4	5	6	7	8	9	10	11

Idea: Keep the height of the tree as small as possible.

Union by size

0	1	2	3	4	5	6	7	8	9	10	11
6	6	6	8		10	7		7	7	4	5

Idea: Minimize the number of nodes that increase in height

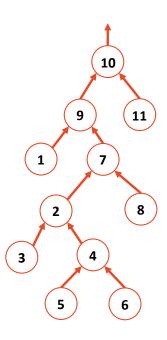
Both guarantee the height of the tree is: _____

Disjoint Sets Find

```
1 int DisjointSets::find(int i) {
2   if ( s[i] < 0 ) { return i; }
3   else { return _find( s[i] ); }
4 }</pre>
```

```
void DisjointSets::unionBySize(int root1, int root2) {
     int newSize = arr [root1] + arr [root2];
 3
     // If arr [root1] is less than (more negative), it is the larger set;
     // we union the smaller set, root2, with root1.
     if ( arr [root1] < arr [root2] ) {</pre>
 7
       arr [root2] = root1;
       arr [root1] = newSize;
10
     // Otherwise, do the opposite:
11
12
     else {
13
       arr [root1] = root2;
       arr [root2] = newSize;
14
15
16
```

Path Compression



Disjoint Sets Analysis

The **iterated log** function:

The number of times you can take a log of a number.

```
log*(n) = 0 , n \le 1
1 + log*(log(n)), n > 1
```

What is **lg*(2⁶⁵⁵³⁶)**?

Disjoint Sets Analysis

In an Disjoint Sets implemented with smart unions and path compression on find:

Any sequence of **m union** and **find** operations result in the worse case running time of O(_______), where **n** is the number of items in the Disjoint Sets.