Cs2 | #12: Stacks, Queues, and Design Example 2 Queue<char> q;
2 5 February 1y, 2020 - G Carl Evans g.enqueue('m');

g.enqueue('o') ;

Data Structures Review q-enqueue ('n’)
e List ADT. . ') .enqueue ('d');

o Linked Memory Implementation (“Linked List”) .enqueue('a');

= O(1) insert/remove at front/back .enqueue('y');

* O(1) insert/remove after a given element
* O(n) lookup by index

o Array Implementation (“Array List”)
*= O(1) insert/remove at front/back
* O(n) insert/remove at any other location
* O(1) lookup by index

.enqueue('i');
.enqueue('s');
.dequeue () ;

.enqueue('h');
.enqueue('a');

QQ Qe QQQ.QQ:

Queue Stack Three designs for data storage in data structures:
Operations + 1. T & data
Data Order:
Implementation:
_ 2. T *data
Runtime:
3. Tdata
Example 1 Queue<int> q;
q.enqueue (3) ; Tradeoffs between our data store strategies:
’ ‘ ‘ ‘ ’ ‘ ‘ ‘ ‘ q.enqueue :2; 1. Who manages the lifecycle of the data?
g: :2$:E: iy ’ 2. Isit possible to store a NULL as the data?
q.enqueue (7) ; 3. If the data is manipulated by user code while stored in our data
q.dequeue() ; structure, are the changes reflected within our data structure?
q.dequeue () ; 4. What is the relative speed compared to other methods?
g.enqueue (2) ;
g.enqueue (1) ; Storage by Storage by Storage by
q.enqueue (3) ; Reference Pointer Value
q.enqueue (5) ; Lifecycle
q.dequeue () ; management of data?
q-enqueue (9) ; Possible to insert
NULL?
External data
manipulation?

Speed

Accessing Every Element in Our List / Queue / [Anything]
Suppose we want to look through every element in our data structure.
What if we don’t know what our data structure even looks like?

e Tae s f Linked List
[LI T] Array
'.—I. Hypercube

Iterators
In C++, iterators provide an interface for client code access to data in
a way that abstracts away the internals of the data structure.

An instance of an iterator is a current location in a pass through the
data structure:

Cur. Location | Current Data Next

Type

Linked List

Array

Hypercube

Using an Iterator

stllist.cpp

oOdJoUld WN PR

The iterator minimally implements three member functions:
operator*, Returns the current data
operator++, Advance to the next data
operator!=, Determines if the iterator is at a different location

#include <vector>
#include <string>
#include <iostream>

struct Animal {

std: :string name, food;
bool big;
Animal (std: :string name = "blob", std::string food = "you",

bool big = true)

};

name (name) , food(food), big(big) { /* nothing */ }

int main() {

Animal g("giraffe", "leaves",
p("penguin", "fish",
std: :vector<Animal> zoo;

true),
false), b("bear");

zoo.push _back(g) ;
zoo.push_back (p) ;
zoo.push _back (b) ;

// std::vector’s insertAtEnd

for (std::vector<Animal>::iterator it = zoo.begin();
it !'= zoo.end(); it++) {
std::cout << (*it) .name << " " << (*it).food << std::endl;

}

return 0;

Q: What does the above code do?

Implementing an Iterator
A class that implements an iterator must have two pieces:

1. [Implementing Class]:

2. [Implementing Class’ Iterator]:
A separate class (usually an internal public member class) that
extends std: :iterator and implements an iterator.

For-Each loop with Iterators

stllList-forEach.cpp

20
21
22

for (const Animal & animal :

}

zoo) {
std: :cout << animal.name << " " << animal.food << std

::endl;

CS 225 — Things To Be Doing:

Quiz 2 ends today.

mp_ stickers due tonight; MP3 released tomorrow
lab_ quacks released on Wednesday

Daily POTDs

