

#13: Iterators
February 18, 2020 · G Carl Evans

Iterators
In C++, iterators provide an interface for client code access to data in
a way that abstracts away the internals of the data structure.

An instance of an iterator is a current location in a pass through the
data structure:

Type Cur. Location Current Data Next
Linked List
Array
Hypercube

The iterator minimally implements three member functions:
 operator*, Returns the current data
 operator++, Advance to the next data
 operator!=, Determines if the iterator is at a different location

Implementing an Iterator
A class that implements an iterator must have two pieces:

1. [Implementing Class]: Must implement:

-

-

2. [Implementing Class’ Iterator]:
A separate class (usually an internal class) that extends
std::iterator and implements an iterator. This requires:

 -

 -

 -

Locations of ::begin and ::end iterators:

Type ::begin() ::end()
Linked List
Array

Using an Iterator

stlList.cpp
1
2
3
4
5
6
7
8

9
10
11
12
13

14
15
16
17
18
19
20

21
22
23
24
25

#include <vector>
#include <string>
#include <iostream>

struct Animal {
 std::string name, food;
 bool big;
 Animal(std::string name = "blob", std::string food = "you",
bool big = true) :
 name(name), food(food), big(big) { /* nothing */ }
};

int main() {
 Animal g("giraffe", "leaves", true),
 p("penguin", "fish", false), b("bear");
 std::vector<Animal> zoo;

 zoo.push_back(g);
 zoo.push_back(p); // std::vector’s insertAtEnd
 zoo.push_back(b);

 for (std::vector<Animal>::iterator it = zoo.begin();
 it != zoo.end(); it++) {
 std::cout << (*it).name << " " << (*it).food << std::endl;
 }

 return 0;
}

Q: What does the above code do?

For-Each loop with Iterators

stlList-forEach.cpp
20
21
22

for (const Animal & animal : zoo) {
 std::cout << animal.name << " " << animal.food << std::endl;
}

Trees!
“The most important non-linear data structure in computer science.”
- David Knuth, The Art of Programming, Vol. 1

We will primarily talk about binary trees:
• What’s the longest English word you can make using the

vertex labels in the tree (repeats allowed)?
• Find an edge that is not on the longest path in the tree. Give

that edge a reasonable name.
• One of the vertices is called the

root of the tree. Which one?
• Make a “word” containing the

names of the vertices that have a
parent but no sibling.

• How many parents does each
vertex have?

• Which vertex has the fewest
children?

• Which vertex has the most
ancestors?

• Which vertex has the most
descendants?

• List all the vertices is b’s left subtree.
• List all the leaves in the tree.

Definition: Binary Tree
A binary tree T is either:

Tree Property: Tree Height

Tree Property: Full

Tree Property: Perfect

 Tree Property: Complete

CS 225 – Things To Be Doing:

1. mp_lists has been released; extra credit deadline is Monday!
2. lab_quacks in lab this week
3. Daily POTDs

