CS 225

Data Structures

October 16 — kd-Tree and Btrees Intro

G Carl Evans

Range-based Searches

Balanced BSTs are useful structures for range-based and
nearest-neighbor searches.

Q: Consider pointsin 1D: p ={p1, P2, - Pn}-
..what points fall in [11, 42]?

Range-based Searches

Q: Consider pointsin 1D: p ={p1, P2, - Pn}-
..what points fall in [11, 42]?

Range-based Searches

Running Time

Students

100.00%

90.00%

80.00%

70.00%

60.00%

50.00%

40.00%

30.00%

20.00%

10.00%

000% ®-*°

000%

10.00%

....“".

20.00%

Midpoint Grade CDF

P
..-0"""".

'oo.

30.00% 40.00% 50.00% 60.00% 70.00%

Course Grade (of 410) w/o EC

80.00%

90.00%

100.00%

Range-based Searches

Consider points in 2D: p ={p1, P2, ---» Pn}-

Q: What points are in the rectangle:
[(xll yl)l (XZI yZ)]?

Q: What is the nearest point to (x4, y4)?

o
pZ . .
Ps Ppe
o
P1
o
P3 ()

Range-based Searches
Consider points in 2D: p ={p1, P2, ---» Pn}-

Space divisions:

o
pZ . .
Ps Ppe
o
P1
o
P3 ()

Range-based Searches

o
P2 o o
Ps P
o
P1
o
P3)
Pa o P P2 p Y P p
P7

kD-Trees

Ps Ps

kD-Trees

Ps

Pe

CS 225 — Midpoint Grade Update

100.00%
90.00%
80.00%
70.00%
60.00%

50.00%

Students

40.00%
30.00%

20.00%

10.00% ‘p".

eoo®®
° ® PP o o o o
000% @ ©® @

000% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00% 90.00% 100.00%

Course Grade (of 410) w/o EC

B-Trees

B-Trees

Q: Can we always fit our data in main memory?

Q: Where else can we keep our data?

However, Our big-O has assumed uniform time for all
operations.

Vast Differences in Time
A 3GHz CPU performs 3m operations in

Old Argument: “Disk Storage is Slow”
- Bleeding-edge storage is pretty fast:
SSD

- Large Disks (25 TB+) still have slow throughout:

New Argument: “The Cloud is Slow!”

AVLs on Disk

O
St

olololNo
o

Real Application

Imagine storing driving records for everyone in the US:

How many records?
How much data in total?

How deep is the AVL tree?

BTree Motivations

Knowing that we have large seek times for data, we want
to:

BTree (of order m)

-3

8

23

25

31

42

43

55

Goal: Minimize the number of reads!
Build a tree that uses

[1 network packet]
[1 disk block]

/ node

BTree Insertion

A BTrees of order m is an m-way tree:
- All keys within a node are ordered
- All leaves contain hold no more than m-1 nodes.

BTree Insertion

When a BTree node reaches m keys:

BTree Recursive Insert

23

42

31

43

55

BTree Recursive Insert

23

42

31

43

55

BTree Visualization/Tool

https://www.cs.usfca.edu/~galles/visualization/BTree.html

https://www.cs.usfca.edu/~galles/visualization/BTree.html

Btree Properties

A BTrees of order m is an m-way tree:
- All keys within a node are ordered
- All leaves contain hold no more than m-1 nodes.

- All internal nodes have exactly one more key than children
- Root nodes can be a leaf or have [2, m] children.

- All non-root, internal nodes have [ceil(m/2), m] children.

- All leaves are on the same level

BTree Search

-11

23

42

55

25

31

43

60

BTree Search

OO oyl dWDNER

RFRRRRBRRR
oulbd WNKRO

bool Btree:: exists (BTreeNode & node, const K & key) {

unsigned i;
for (i = 0; i < node.keys ct_ && key < node.keys [i]; i++)

if (i < node.keys ct_ && key == node.keys [i]) {
return true;

}

if (node.isLeaf()) {
return false;

} else {
BTreeNode nextChild = node. fetchChild(i); 23
return exists(nextChild, key);

{

}

42

55

31

43

60

BTree Analysis

The height of the BTree determines maximum number of
possible in search data.

...and the height of the structure is:

Therefore: The number of seeks is no more than

..suppose we want to prove this!

BTree Analysis

In our AVL Analysis, we saw finding an upper bound on the
height (given n) is the same as finding a lower bound on the
nodes (given h).

We want to find a relationship for BTrees between the
number of keys (n) and the height (h).

