CS/Z\ #26: Graph Vocabulary + Implementation
2 5/ April 12, 2021 - G Carl Evans

A Review of Major Data Structures So Far

Subgraph(G): G’ = (V’, E’):
VeV,EFeE and(u,v)EE>ueV,veV

Array-based List/Pointer-based
- Sorted Array - Singly Linked List
- Unsorted Array - Doubly Linked List
- Stacks - Skip Lists
- Queues - Trees
- Hashing - BTree
- Heaps - Binary Tree
- Priority Queues - Huffman Encoding
- UpTrees - kd-Tree
- Disjoint Sets - AVL Tree
Motivation:

Graphs are awesome data structures that allow us to represent an
enormous range of problems. To study these problems, we need:
1. A common vocabulary to talk about graphs
2. Implementation(s) of a graph
3. Traversals on graphs
4. Algorithms on graphs

Graph Vocabulary
Consider a graph G with vertices V and edges E, G=(V,E).

Incident Edges:
IV)={(x,v)inE}

Degree(v): |I|

Adjacent Vertices:
AWM ={x:(x,v)inE}

Path(G.): Sequence of vertices
connected by edges

Cycle(G.,): Path with a common begin and end vertex.

Simple Graph(G): A graph with no self loops or multi-edges.

Graphs that we will study this semester include:
Complete subgraph(G)
Connected subgraph(G)
Connected component(G)
Acyclic subgraph(G)
Spanning tree(G)

Size and Running Times
Running times are often reported by n, the number of vertices, but
often depend on m, the number of edges.

For arbitrary graphs, the minimum
number of edges given a graph that is:

Not Connected:

Minimally Connected*:

The maximum number of edges given a graph that is:

Simple:

Not Simple:

The relationship between the degree of the graph and the edges:




Graph ADT

Proving the Size of a Minimally Connected Graph

Data Functions
1. Vertices insertVertex (K key) ;

Theorem: Every connected graph G=(V, E) has at least |V|-1 edges. insertEdge (Vertex vl, Vertex v2,
2. Edges K key);

Proof of Theorem
Consider an arbitrary, connected graph G=(V, E).

removeVertex (Vertex v) ;

3. Some data structure removeEdge (Vertex vl, Vertex v2);

maintaining the

StruFture between incidentEdges (Vertex v);
vertices and edges. areAdjacent (Vertex v1l, Vertex v2);

Suppose |V]| = 1:

origin (Edge e);

Definition: destination (Edge e) ;
Theorem:
Graph Implementation #1: Edge List
Inductive Hypothesis: For anyj < |V], any connected graph of j Vert. | Edges
vertices has at lest j-1 edges. @

Suppose |V]| > 1:
1. Choose any vertex: a

: @
_ N

N (S |<|s
oo T e
\
)
Q.

@

2. Partitions: Operations:
_ insertVertex(K key):
_ removeVertex(Vertex v):
-Co:= areAdjacent(Vertex v1, Vertex v2):
- Cx, k=[1...d] := incidentEdges(Vertex v):

3. Count the edges: CS 225 — Things To Be Doing:

|Eg| =

1. mp_traversal due today.

...by application of our IH and Lemma #1, every component Ci is a 2. Daily POTDs are ongoing!
minimally connected subgraph of G...

|Eg| =



