CS 2 #30: DFS and Minimum Spanning Trees (MST)
/7 N\ n
2 5 April 21,2021 - Brad Solomon

Graph Traversal — BFS

Big Ideas: Utility of a BFS Traversal

vertex.

Obs. 1: Traversals can be used to count components.
Obs. 2: Traversals can be used to detect cycles.
Obs. 3: In BFS, d provides the shortest distance to every

Obs. 4: In BFS, the endpoints of a cross edge never differ in
distance, d, by more than 1: |d(u) - d(v)| =1

Modifying BFS to create DFS

1 | BFS(G):

2 Input: Graph, G

3 Output: A labeling of the edges on
4 G as discovery and cross edges
5

6 foreach (Vertex v : G.vertices()):
7 setLabel (v, UNEXPLORED)

8 foreach (Edge e : G.edges()):

9 setLabel (e, UNEXPLORED)
10 foreach (Vertex v : G.vertices()):
11 if getLabel (v) == UNEXPLORED:
12 BFS (G, V)
13

14 | BFS(G, Vv):
15 Queue g

16 setLabel (v, VISITED)

17 q.enqueue (V)

18

19 while 'qg.empty():

20 v = q.dequeue ()

21 foreach (Vertex w : G.adjacent(v)):
22 if getlLabel (w) == UNEXPLORED:

23 setLabel (v, w, DISCOVERY)

24 setLabel (w, VISITED)

25 g.enqueue (W)

26 elseif getLabel (v, w) == UNEXPLORED:
27 setLabel (v, w, CROSS)

DFS Graph Traversal

Idea: Traverse deep into the
graph quickly, visiting more
distant nodes before neighbors.

Two types of edges: K

Minimum Spanning Tree

A Spanning Tree on a connected graph G is a subgraph, G’, such

that:
1. Everyvertexis Gisin G’ and

2. G’ is connected with the minimum number of edges

This construction will always create a new graph that is a

(connected, acyclic graph) that spans G.

A Minimum Spanning Tree is a spanning tree with the minimal
total edge weights among all spanning trees.

e Every edge must have a weight
o The weights are unconstrained, except they must be
additive (eg: can be negative, can be non-integers)
e Output of a MST algorithm produces G’
o G’is aspanning graph of G
o G'isatree

G’ has a minimal total weight among all spanning trees. There may be
multiple minimum spanning trees, but they will have the same total
weight.

Pseudocode for Kruskal’s MST Algorithm

1 | KruskalMST (G) :

2 DisjointSets forest

3 foreach (Vertex v : G):

4 forest.makeSet (v)

5

6 PriorityQueue Q // min edge weight
7 foreach (Edge e : G):

8 Q.insert (e)

9

10 Graph T = (V, {})

11

12 while |T.edges()| < n-1:

13 Vertex (u, v) = Q.removeMin ()

14 if forest.find(u) == forest.find(v):
15 T.addEdge (u, v)
16 forest.union(forest.find(u),
17 forest.find(v))
18
19 return T

Kruskal’s Running Time Analysis
We have multiple choices on which underlying data structure to use to
build the Priority Queue used in Kruskal’s Algorithm:

Priority Queue

Implementations: | Heap Sorted Array

Building
:6-8

Each removeMin
:13

Kruskal’s Algorithm (A, D)
(E, H)

5 'E_S' 15 (F, G)

o

'e' 5 16 T (8, D)
| 2 A0 L (G, E)
6
H

(G, H)
., — (E, C)
'A“-rrn,uy””a 9 12 (C, H)

- (E, F)
(F, C)
(D, E)
(8, C)
(C, D)
(A, F)
(D, F)

Based on our algorithm choice:

Priority Queue

Implementation: | Total Running Time

Heap

Sorted Array

Reflections
Why would we prefer a Heap?

Why would be prefer a Sorted Array?

CS 225 — Things To Be Doing:

Keep working on mp_ mazes!

Mid-Project Check-ins this week! (Keep working on project)
Lab_hash released today!

POTD Ongoing

i

