
CS 225
Data	Structures

March 19 – AVL Applications
Brad Solomon

Informal Early Feedback Reminder

Learning Objectives

• Review	Big	O	in	the	contexts	of	an	AVL	tree	

• Formalize	relationship	between	 	and	 	in	an	AVL	tree	

• Prove	 	has	an	upper	bound	of	 	

• Wrap	up	balanced	binary	trees

n h

h O(log	n)

AVL Tree Analysis

We	will	argue	that:	h	is	_________.

For	AVL	tree	of	height	h,	we	know:

find	runs	in:	__________.

insert	runs	in:	__________.

remove	runs	in:	__________.

AVL Tree Analysis

n,	number	of	nodes

h,
	h
ei
gh
t c * g(n)

g(n)

f (n)
k

The	height	of	the	tree,	f(n),	will	always	be	less	than	
c	×	g(n)	for	all	values	where	n	>	k.

AVL Tree Analysis

n,	number	of	nodes

h,
	h
ei
gh
t

n,
	n
um

be
r	o

f	n
od

es

h,	height

c * g(n)

g(n)

f (n)
k

The	number	of	nodes	in	the	tree,	f-1(h),	will	always	
be	greater	than	c	×	g-1(h)	for	all	values	where	n	>	k.

g−1(h) c * g−1(h)

f −1(h)

	=	“Tree	height	given	nodes”f(n) 	=	“Nodes	in	tree	given	height”f −1(h)

Plan of Action

			 	=	minimum	number	of	nodes	in	an	AVL	tree	of	height	N(h) h

Since	our	goal	is	to	find	the	lower	bound	on	n	given	h,	we	
can	begin	by	defining	a	function	given	h	which	describes	the	
smallest	number	of	nodes	in	an	AVL	tree	of	height	h:

Simplify the Recurrence

N(h) = 1 + N(h − 1) + N(h − 2)

N(h) ≥ N(h) − 1 n,
	n
um

be
r	o

f	n
od

es

h,	height

c * g−1(h)
N(h)

State a Theorem
Theorem:	An	AVL	tree	of	height	h	has	at	least	__________.	

Proof	by	Induction:	
I. Consider	an	AVL	tree	and	let	h	denote	its	height.	

II. Base	Case:	______________	

An	AVL	tree	of	height	____	has	at	least	____	nodes.		

Prove a Theorem

An	AVL	tree	of	height	____	has	at	least	____	nodes.		

III. Base	Case:	______________

Prove a Theorem
IV. Induction	Case:	______________

then	we	must	show	for	height	 	that	h N(h) ≥ 2h/2

If	for	all	heights	 ,	 	i < h N(i) ≥ 2i/2

Prove a Theorem
V. Using	a	proof	by	induction,	we	have	shown	that:

…and	inverting:

AVL Runtime Proof
An	upper-bound	on	the	height	of	an	AVL	tree	is	O(lg(n)):	

				N(h)	:=	Minimum	#	of	nodes	in	an	AVL	tree	of	height	h		
				N(h)	=	1	+	N(h-1)	+	N(h-2)	
																	>	1	+	2h-1/2	+	2h-2/2	
																	>	2	×	2h-2/2	=	2h-2/2+1	=	2h/2	

			Theorem	#1:	
							Every	AVL	tree	of	height	h	has	at	least	2h/2	nodes.

AVL Runtime Proof
An	upper-bound	on	the	height	of	an	AVL	tree	is	O(lg(n)):	

				#	of	nodes	(n)	≥	N(h)	>	2h/2	
				n	>	2h/2	
				lg(n)	>	h/2	
				2	×	lg(n)	>	h	
				h	<	2	×	lg(n)																	,	for	h	≥	1	

Proved:	The	maximum	number	of	nodes	in	an	AVL	tree	of	
height	h	is	less	than	2	×	lg(n).

Summary of Balanced BST
AVL	Trees	
- Max	height:	1.44	*	lg(n)	
- Rotations:

Summary of Balanced BST
AVL	Trees	
- Max	height:	1.44	*	lg(n)	
- Rotations:	
							Zero	rotations	on	find	
							One	rotation	on	insert	
							O(h)	==	O(lg(n))	rotations	on	remove	

Red-Black	Trees	
- Max	height:	2	*	lg(n)	
- Constant	number	of	rotations	on	insert	(max	2),	remove	
(max	3).

Red-Black Trees in C++
C++	provides	us	a	balanced	BST	as	part	of	the	standard	library:	
 std::map<K, V> map;

Red-Black Trees in C++

void std::map<K, V>::erase(const K &)

V & std::map<K, V>::operator[](const K &)

Why Balanced BST?

Summary of Balanced BST
Pros:	
- Running	Time:	

- Improvement	Over:	

- Great	for	specific	applications:

Summary of Balanced BST
Cons:	
- Running	Time:	

- In-memory	Requirement:

Trees in the Real World
Q:	Can	we	always	fit	our	data	in	main	memory?	

Q:	Where	else	can	we	keep	our	data?	

We	assume	constant	time	memory	access,	but	the	constant	
factor	can	be	limiting	in	real	world	settings!

Time x1 billion
L1 cache reference 0.5 seconds
Branch mispredict 5 seconds
L2 cache reference 7 seconds
Mutex lock/unlock 25 seconds
Main memory reference 100 seconds
Compress 1K bytes 50 minutes
Send 2K bytes over 1 Gbps network 5.5 hours
SSD random read 1.7 days
Read 1 MB sequentially from memory 2.9 days
Read 1 MB sequentially from SSD 11.6 days
Disk seek 16.5 weeks
Read 1 MB sequentially from disk 7.8 months
Above two together 1 year
Send packet CA->Netherlands->CA 4.8 years

(Measured in 2011 at https://gist.github.com/hellerbarde/2843375)

Memory Hierarchy (Speed of access)

https://gist.github.com/hellerbarde/2843375

5

3 6

4

2

8

10

9 12

111 7

AVLs in the Cloud

BTree Motivations
Knowing	that	we	have	large	seek	times	for	data,	we	want	to:

BTree (of order m)
A	BTrees	of	order	m	is	an	m-way	tree:	
- All	keys	within	a	node	are	ordered	
- All	nodes	contain	no	more	than	m-1	keys.

m=5

BTree in the Real World

Goal:	Minimize	the	number	of	reads!	
		Build	a	tree	that	uses		______________________	/	node	
																																										[1	network	packet]	
																																										[1	disk	block]

-3 8 23 25 31 42 43 55
m=9

