
Department of Computer Science

String Algorithms and Data Structures

CS 199-225

Brad Solomon

May 1, 2023

Hidden Markov Models

Please fill out ICES evaluations
Feedback is important for the development of the class

Class is well developed already — what needs work from here?

Learning Objectives

Introduce Hidden Markov Models

Review Markov Chains

Introduce the Viterbi algorithm for finite discrete HMMs

Markov Chain
A finite Markov Chain has a set of states and a finite matrix S M

Clear Rain

Snow

.5
.3

.2
M =

.5 .3 .2

.5 .4 .1

.2 .1 .7

S = {Clear, Rain, Snow}

Markov Assumption

Probability of state depends only on previous state xk xk−1

P(x) = P(xk, xk−1, . . . x1)

Ex: Let x = {C, R, C, R, R}

P(x) = P(xk |xk−1, . . . x1)P(xk−1, . . . x1)

P(x) = P(xk |xk−1, . . . x1)P(xk−1 |xk−2, . . . x1) . . . P(x2 |x1)P(x1)

P(x) ≈ P(xk |xk−1)P(xk−1 |xk−2) . . . P(x2 |x1)P(x1)

Markov Chain
Given a Markov Chain and an initial state, all subsequent states can be
represented either as a series of random states or a transition probability.

Clear Rain

Snow

M =
.5 .3 .2
.5 .4 .1
.2 .1 .7

ClearX0 =

ClearX1 =

SnowX2 =

SnowX3 =

SnowX4 =

RainX5 =

Markov Chain
Given a Markov Chain and an initial state, all subsequent states can be
represented either as a series of random states or a transition probability.

Clear Rain

Snow

M =
.5 .3 .2
.5 .4 .1
.2 .1 .7

P0 = (.4 .3 .3)

P1 = (.41 .27 .32)

P2 = (.404 .263 .333)

P3 = (.401 .259 .340)

>>> cpg_conds, _ = markov_chain_from_dinucs(samp_cpg)

>>> print(cpg_conds)

[[0.19152248, 0.27252589, 0.39998803, 0.1359636],

 [0.18921984, 0.35832388, 0.25467081, 0.19778547],

 [0.17322219, 0.33142737, 0.35571338, 0.13963706],

 [0.09509721, 0.33836493, 0.37567927, 0.19085859]]

>>> default_conds, _ = markov_chain_from_dinucs(samp_def)

>>> print(default_conds)

[[0.33804066, 0.17971034, 0.23104207, 0.25120694],

 [0.37777025, 0.25612117, 0.03987225, 0.32623633],

 [0.30257815, 0.20326794, 0.24910719, 0.24504672],

 [0.21790184, 0.20942905, 0.2642385 , 0.3084306]]

>>> print(np.log2(cpg_conds) - np.log2(def_conds))

[[-0.87536356, 0.59419041, 0.81181564, -0.85527103],

 [-0.98532149, 0.49570561, 2.64256972, -0.7126391],

 [-0.79486196, 0.68874785, 0.51821792, -0.79549511],

 [-1.22085697, 0.73036913, 0.48119354, -0.69736839]]

CpG

Default

A

C

G

T

A

C

G

T

Log ratio

A

C

G

T

A C G T

Markov Chain in Sequencing
Drew 1,000 100-mers from inside CpG islands and another 1,000 from
outside, and calculated S(x) for all

Orange: default Blue: CpG

Frequency

S(x) score

M =
.4 .6 0
.1 .6 .3
.5 0 .5

Work Game

Clean

If I’m working at time 0, what is probability that I’m
working at time ?t

Claim: Pr(Xt = v |X0 = u) = Mt[u, v]

Markov Chain Matrix

T=1:

T=2:

Base Case:

Markov Chain Matrix

M =
.4 .6 0
.1 .6 .3
.5 0 .5

Work Game

Clean

Claim: Pr(Xt = v |X0 = u) = Mt[u, v]
Induction:  
Assume . 

Show holds for

Pr(Xt−1 = v |X0 = u) = Mt−1[u, v]
Pr(Xt = w |X0 = u) = Mt[u, w]

M =
.4 .6 0
.1 .6 .3
.5 0 .5

Work Game

Clean

What happens as ?t → ∞
Markov Chain Matrix

M3 =
.238 .492 .270
.307 .402 .291
.335 .450 .215

M10 =
.2940 .4413 .2648
.2942 .4411 .2648
.2942 .4413 .2648

M60 =
.2941 .4412 .2647
.2941 .4412 .2647
.2941 .4412 .2647

Markov Chain Stationary Distribution
A probability vector is called a stationary distribution for a Markov
Chain if it satisfies the stationary equation:

π
π = πM

M =
.4 .6 0
.1 .6 .3
.5 0 .5

π[W] = .4π[W] + .1π[G] + .5π[C]

π[G] = .6π[W] + .6π[G] + 0π[C]

π[C] = 0π[W] + .3π[G] + .5π[C]

Markov Chain Stationary Distribution
Stationary distributions can be calculated using the system of equation
(and that all probabilities sum to 1). But not every Markov Chain has a
steady state (and some have infinitely many)!

On Of
1

1

1 2
.5 .5

3
1 1

Markov Chain Monte Carlo
There are ways to prove whether a Markov Chain has a stationary
distribution, but several algorithms exist that approximate!

Gibbs Sampling:

Randomly assign values to a probability
vector .πt=0 = (θ0, θ1, . . . , θd−1)

Compute for each :πt+1 i, 0 ≤ i < d

Update value based onθi

(θ0, . . . , θi−1)t+1, (θi+1, . . . , θd−1)t

Repeat for different starting i

Markov Chain Monte Carlo
A single step of a 3D Gibbs Sampling:

Given πt = (Xt, Yt, Zt)

Compute by updating each value one at a time:πt+1

Xt+1 = M[X, X]Xt + M[Y, X]Yt + M[Z, X] * Zt

Yt+1 = M[X, Y]Xt+1 + M[Y, Y]Yt + M[Z, Y] * Zt

Zt+1 = M[X, Z]Xt+1 + M[Y, Z]Yt+1 + M[Z, Z] * Zt

Now have πt+1 = (Xt+1, Yt+1, Zt+1)

Hidden Markov Models

In the real world, we often don’t know the underlying markov chain!

Instead, we have observations that can be used to predict our current state.

Ex: Repeated coin flips but sometimes I cheat and use a fixed coin.

..
loaded

T H H T H

Hidden Markov Models

...

...

s1 s2 s3 s4 sn

e1 e2 e3 e4 en

Unobserved States

Observed Emissions

Hidden Markov Models

Outside Inside

M =
.5 .3 .2
.5 .4 .1
.2 .1 .7

E =
.8 .2
.3 .7
.5 .5

Pr({O, I, O}, {C, R, S} | P(T0 = C) = 0.4)?

Pr({O, I, O} | {C, R, S})?

Hidden Markov Models
M =

.5 .3 .2

.5 .4 .1

.2 .1 .7
E =

.8 .2

.3 .7

.5 .5

If I go outside for three days, what was the most likely weather?

Outside Inside

Pr({O, I, O})?

Viterbi Algorithm
We can brute force all possible combinations…

… or we can use the Markov Assumption with Dynamic Programming

M = (.6 .4
.4 .6) E = (.8 .2

.5 .5)

Example by Ben Langmead

Viterbi Algorithm

H H T T H T H H H H H

Loaded

Fair

Emissions

HMM States

Sk, i = greatest joint probability of observing the length-i prefix
of e and any sequence of states ending in state k

max P(xF, HHTT)
x

max P(xL, HHTTHTHH)
x

Viterbi Algorithm

Loaded

Fair

xt xt+1

et+1

S[t, L]

S[t, F]

S[t + 1, L] =

Viterbi Algorithm

Loaded

Fair

xt xt+1

et+1

S[t, L]

S[t, F]

S[t + 1, F] =

Assume we start with Fair/Loaded with equal probability

S[0, L] = 0.5 · P(H | L) S[0, F] = 0.5 · P(H | F)

SL, 0 = 0.5 · 0.8 SF, 0 = 0.5 · 0.5

Viterbi Algorithm

H H T T H T H H H H H

Loaded

Fair

M = (.6 .4
.4 .6)

E = (.8 .2
.5 .5)

Viterbi Algorithm

0.4

0.25

H H T T H T H H H H H

Loaded

Fair

M = (.6 .4
.4 .6)

E = (.5 .5
.8 .2)

S[1, L] =

Viterbi Algorithm

0.4 0.19

0.25

H H T T H T H H H H H

Loaded

Fair

M = (.6 .4
.4 .6)

E = (.5 .5
.8 .2)

S[1, F] =

Viterbi Algorithm

0.4 0.19

0.25 0.08

H H T T H T H H H H H

Loaded

Fair

M = (.6 .4
.4 .6)

E = (.5 .5
.8 .2)

Viterbi Algorithm

-1.32 -2.38 -5.44 -8.35 -8.08 -11.1 -11.6 -12.6 -13.7 -14.7 -15.8

-2 -3.64 -4.7 -6.4 -8.2 -9.9 -11.7 -13.4 -14.9 -16 -17

H H T T H T H H H H H

These get small — now scaledlog2

Traceback: Same as edit distance!

Start from largest value and remember ‘where I came from’

Viterbi Algorithm

-1.32 -2.38 -5.44 -8.35 -8.08 -11.1 -11.6 -12.6 -13.7 -14.7 -15.8

-2 -3.64 -4.7 -6.4 -8.2 -9.9 -11.7 -13.4 -14.9 -16 -17

H H T T H T H H H H H

These get small — now scaledlog2

Traceback: Same as edit distance!

Start from largest value and remember ‘where I came from’

Viterbi Algorithm
E, Emissions

S, States

What is running time?

What will you get out of this class?

Understand fundamental string algorithms

Experience applying data structures, algorithms, and algorithm
design principles to real world problems

Justify implementation choices based on theoretical or practical
considerations

Build a foundation for future data science projects

Thanks for listening! Have a good summer

