String Algorithms and Data Structures

FM Index

CS 199-225 April 3, 2023
Brad Solomon

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Burrows-Wheeler Transform

Reversible permutation of the characters of a string

Sabaaba
aSabaab
aabaS$Sab
abaabas$ agaSEbg
4 abaaba

! /’%b. ba$abaa
s VbaabaSa

Sort Burrows-Wheeler
Matrix

abbas$aa
BWT(T)

Last
column

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm. Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994

Burrows-Wheeler Transform: LF Mapping

The jth occurrence of a character cin L and the ith occurrence of cin F
correspond to the same occurrence in T (i.e. have same rank)

Sabaabas S abaabjas
as;;$abaab; az $Sabaab;
ajjlaba$abo aitabas$abo
azba$ab a; azba$ abla;
ascbaaba$ acbaabas$
b:a$abaa b:a$abala
boaabas$ a boaaba $|ao
They're sorted by They're sorted by
right-context right-context

Any ranking we give to characters in T will matchin Fand L

Burrows-Wheeler Transform: LF Mapping

Another way to visualize:

F L F L F L F L F L F L F L
—> $—as
az—>b
a1—>bo
d2—>ai
ao->$
bi—az

bo—>ao

T: aoboaj az bias S

A review of ‘'F' and ‘L’

L = CGGGCC$ 2 = “ACGT”

How can we represent F?

A review of ‘F' and ‘'l
L = CGGGCCS > = “ACGT”

How can we represent F?

As a full text string: F = SCCCGGG
As a map<string, int>: F={5"1,'C":3,'G": 3}

As a vector<int>: F=10, 3, 3, 0]

A review of ‘'F' and ‘L’

BWT(T) =e$1ppa

What row index in F contains‘e’?

What row index in L contains‘e’?

What row index in F contains the second ‘p’?

0 =0 9 Wn

09T OCT —WnN0O

FM Index @

An index combining the BWT with a few small auxiliary data structures
Core of index is first (F) and last (L) rows from BWM:

L isthe samesizeas T

F can be represented as array of |2| integers (or
not stored at all!)

ST 999N
0 0N T O ™

We're discarding T— we can recover it from L!

FM Index: Querying

P=A A A

FM Index: Querying

P=B A B

FM Index: Lingering Issues

FM Index: Lingering Issues

(1) Scanning for preceding (2) Need way to find where
characterin L is slow matches occurin T:
S ao S ao
ao bo do bo
ai b1 o(m) ai b1
az a1 | scan I a2 ai
as S v as S
bo a2 bo a2
b1 as b1 as
We don't store ranks! Current output: [3,4]

Location in T: [0,3]

This is where our auxiliary data structures comeiin...

FM Index: Fast rank calculations

Is there a fast way to determine which specific bs precede the as
in our range?

S ao
do bo
a b1 | o(m)
a- a1 | scan
as $v
bo a2
b1 a3

More generally, given arange in L and a character to search,
how can we quickly find all matches (and their ranks)?

FM Index: Occurrence Table

|dea: pre-calculate cumulative # as, bs in L up to every row:

a b

0 o9 v o9 O T 9 =

FM Index: Occurrence Table

|dea: pre-calculate cumulative # as, bs in L up to every row:

o 9 v 9 O T 9 ™=
NINININMNIN =|OT

a
1
1
1
2
2
3
4

FM Index: Occurrence Table Query:’aba’

|dea: pre-calculate cumulative # as, bs in L up to every row:

S O 0 9 0 O v M
0 09 WV o T T o ~
DI WIN|IN == -
NI NN NN =l T

FM Index: Occurrence Table Query:’aba’

|dea: pre-calculate cumulative # as, bs in L up to every row:

<« 0bs up to &including this row

<« 2 bs up to &including this row

NN‘MNU'U"NI\

S O 0 9 0 O v M
Bl WININ == —a|Y
NININ NN =T

FM Index: Occurrence Table Query: ‘aba’

|dea: pre-calculate cumulative # as, bs in L up to every row:

S O 0 9 0 O v M
0 09 WV o T T o ~
DI WIN|IN == -
NI NN NN =l T

—

FM Index: Occurrence Table Query: ‘bb’

What two indices should | look up? What ranks did we find?

O O O T 9 9 ¥ =
o O O O \»n»n O 9 —
N | | e | oed | od | o |

B RAWN = =O T

FM Index: Occurrence Table @

An index combining the BWT with a few small auxiliary data structures

Occurrence table speeds up L lookup by implicitly storing ranks

ab

S a Tol ——
a b T

a b <_ScanisO(m) 119 Lookup is

a a work O(1) work
m |22

2 > 1 2[2]
b a 31
b a 4]2
|—|2|—|

Tableis m x | X | integers — that’s worse than a suffix array!

FM Index: Occurrence Table

Next idea: pre-calculate # as, bs in L up to some rows, e.g. every 5th row.
Call pre-calculated rows checkpoints.

F L a b
S

1 0

o 9 N 9 O O 9

o T 9 9 9 9

FM Index: Occurrence Table

To resolve a lookup for a non-checkpoint row, walk to nearest checkpoint.
Use value at that checkpoint, adjusted for characters we saw along the way.

F L a b
S

1 0

o T 9 9 9 o
o 9 N 9 O T 9

FM Index: Occurrence Table

What goes here?
482+2=484

Checkpoint
above as along the way

What's goes here?

439-2 =437
7
Checkpoint \
below bs along the way

If checkpoints are O(1) distance apart, lookups are O(1)

L a b
a 4| 482 | 432
b

b

N

alll[™™=

a

a

b | N
b A
a

a

b

b 488 | 439
a

b

FM Index: Occurrence Table @

An index combining the BWT with a few small auxiliary data structures

Occurrence table speeds up L lookup by implicitly storing ranks

s ab
a
110
a b
a b <_ScanisO(m)
a a work m
a S
b a
3|2
b a
|—|2|—|

Checkpoints reduce the storage costs (Still O(m) but better than SA)

FM Index: Querying

Problem 2: We don’t know where the matches areinT...

Got the same range, [3, 4], we would

P=aba have got from suffix array
F L
$ do 6|9
o bo 5/a$
a b 2|laabas
Q2 a >|3]a bal$
3,4
|]\33 S >(ola balaba$
/ bo as Index: 0, 3 4lbas
Where are b as llbaabas$

these?

FM Index: Suffix Array Sampling

|dea: store some suffix array elements, but not all

SA' (evens only)
6

2

\4
X

0
4

\ 4

0 O UVrY T O o —

O T 99 9 W ™M

Lookup for row 4 succeeds

Lookup for row 3 fails - SA entry was discarded

FM Index: Suffix Array Sampling

LF Mapping tells us that “a” at the end of row 3 corresponds to...
.. a” at the beginning of row 2

F L SA' (evens only)
S a 6

a b

a b > |2

a ot a

a S 0

b a 4

b a

If saved SA values are O(1) positions apart in T, resolving index is O(1) time

FM Index: Suffix Array Sampling

Many LF-mapping steps may be required to get to a sampled row:

L SA' (every 4th)
a
b
b
Starting here ... a
S 0
a 4
a

FM Index: Suffix Array Sampling

Many LF-mapping steps may be required to get to a sampled row:

SA' (every 4th)

Starting here ...

FM Index: Suffix Array Sampling

Many LF-mapping steps may be required to get to a sampled row:

SA' (every 4th)

Starting here -.»a

(o ko p)

FM Index: Suffix Array Sampling

Many LF-mapping steps may be required to get to a sampled row:

SA' (every 4th)

Starting here ...

3

Missing value = 0 (SA val at destination) + 3 (# steps to destination)

FM Index: Suffix Array Sampling @

An index combining the BWT with a few small auxiliary data structures

Stores all index positions in T with O(1) extra work to calculate

Three steps
> \}

>0
Index: 0 N Index:0+3=3

T 9 (9 9 »n
O 9 NN T T 9

Lets put all these pieces together...

FM Index: Querying

get frange()

pP=aba

pair<int, int> get frange(string c, int s,

nput:
string c:The char we are looking forin F

int s :The starting rank value

int e:The ending rank value F p-aba
Output: S
A pair of values (index start, index end) :0
1
What are ¢, s, and e? a2
L a3
bo
What are the output values? b-

int e)

FM Index: Querying

get frange() :1 : get lrange()
2 1
IRLE 51
b a2
| b as

pair<int, int> get lrange(string c, int s,

nput:
string c:The char we are looking forin F

int s:The starting index of our range

int e:The endingindex of our range F p-aba
Output: S
A pair of values (# occurrences start, end) :0
1
What are ¢, s, and e? a2
L a3
bo
What are the output values? b-

int e)

FM Index: Querying

p=aba
F L
S do
do b

get frange() get lrange()

nair<int, int> get frange(string c, int s, int e)

nput:
string c:The char we are looking forin F

int s :The starting rank value

int e:The ending rank value F paba |
Output: $ ao
A pair of values (index start, index end) o bo
ai b,

What are ¢, s, and e? a ai
das S

bo d>2

?
What are the output values: I b, 2

FM Index: Querying

P=aba
F L
S ao
dao b
get frange() :; get lrange()
as
b

get lrange(‘a’,5,6)->[2,4]
p=aba = ——— P=aba

F L F L
S do S ao
ao bo do bo
ail b1 ail b1
az ai I a2 ai
as 3. as $
bo Q! I bo az
b as: b1 as

get frange(‘a’,2,3)->[3,4]

SA[3] = 3, SA[4] = @ --> Return {0, 3}

FM Index

[Tl=m,[P[=n

P=aba p=aba p=aba
F L F L F L
S Qo S ao S ao
ao b ao b ao b
ai b ai b ai b
az ai az ai a: ai
as S as S / as $
b a> b ax b a>
b as b a3 b as

Finding all matches of P occurs in Tin FM Index is time

Assignment 9: a_fmi

Learning Objective:
Construct a full FM Index

Implement exact pattern matching on a FM Index

Consider: How would you modify the provided code to handle sub-
sampling in the Occurrence Table (OT) or Suffix Array (SA)?

FM Index

Let a = fraction of rows Let b = fraction of SA
we keep elements we keep
a b SA
482 | 432
44
FM Index consists of these,
plus L and F columns
L Note: suffix tree/array didn't
have parameters like aand b
488 | 439
0

FM Index

Components of FM Index: (blue indicates what we can adjust by changing a & b)

First column (F): ~|J |integers
Last column (L): m characters
SAsample: m-aintegers, ais fraction of SA elements kept

OT Checkpoints: m-|X |- bintegers, b is fraction of tallies kept

For DNA alphabet (2 bits / nt), T=human genome, a=1/32,b=1/128:

First column (F): 16 bytes
Last column (L); 2 bits * 3 billion chars = 750 MB

SA sample: 3 billion chars * 4 bytes / 32 = ~ 400 MB
OT Checkpoints: 3 billion *4 alphabet chars *4 bytes / 128 = ~ 400 MB

Total = 1.5 GB ~0.5 bytes per input char

FM Index: Small Memory Footprint

v 6] $ $BANANA

A NA
/' /BANANA 5| AS$ ASBANAN
[3| ANAS ANASBAN
s/ \Na s/ \as 1| ANANAS ANANASB
- - 2 > Ol BANANAS BANANAS
$ / \ NA$ 4| NAS NASBANA

2

SlE NANAS NANASBA

Suffix tree Suffix array FM Index
> 45 GB > 12 GB ~1.5GB

Suffix-Based Index Bounds

Suffix tree Suffix array FM Index

Time: Does P occur?

Time: Count k
occurrences of P

Time: Report k
locations of P

Space

Needs T?

Bytes per input
character

m=|T|,n=|P|, k=4#occurrencesof PinT

Suffix-Based Index Bounds

Suffix tree Suffix array FM Index

Time: Does P occur? O(n) O(n log m) O(n)
Time: Count k O + k) O(n Iog m) 0o(n)
occurrences of P
Time: Report k O(n + k) Onlogm+k) | O +k)
locations of P
Space O(m) O(m) O(m)
Needs T? yes yes no
Bytes per input >15 ~4 ~0.5
character

m=|T|,n=|P|, k=4#occurrencesof PinT

