{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "import seaborn as sns\n", "sns.set(font_scale=2)\n", "sns.set_style(\"whitegrid\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Comparing countries with PCA" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now that we've looked at positions for general players, we can try and compare the players from two different countries. This may allow us to predict the winner of a match between two countries, during the World Cup for example.\n", "\n", "We'll first compare Brazil, a perennial powerhouse, and Japan, a relative newcomer to professional football. We'll construct two datasets, one with goal-keepers, and one with \"regular\" players." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "df = pd.read_csv(\"FIFA_2018.csv\",encoding = \"ISO-8859-1\",index_col = 0, low_memory = False)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | Acceleration | \n", "Aggression | \n", "Agility | \n", "Balance | \n", "Ball control | \n", "Composure | \n", "Crossing | \n", "Curve | \n", "Dribbling | \n", "Finishing | \n", "... | \n", "Sprint speed | \n", "Stamina | \n", "Standing tackle | \n", "Strength | \n", "Vision | \n", "Volleys | \n", "Position | \n", "Name | \n", "Nationality | \n", "Club | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | \n", "94 | \n", "56 | \n", "96 | \n", "82 | \n", "95 | \n", "92 | \n", "75 | \n", "81 | \n", "96 | \n", "89 | \n", "... | \n", "90 | \n", "78 | \n", "24 | \n", "53 | \n", "80 | \n", "83 | \n", "FWD | \n", "Neymar | \n", "Brazil | \n", "Paris Saint-Germain | \n", "
30 | \n", "70 | \n", "77 | \n", "74 | \n", "68 | \n", "80 | \n", "83 | \n", "60 | \n", "61 | \n", "68 | \n", "38 | \n", "... | \n", "74 | \n", "74 | \n", "89 | \n", "81 | \n", "74 | \n", "63 | \n", "DEF | \n", "Thiago Silva | \n", "Brazil | \n", "Paris Saint-Germain | \n", "
39 | \n", "77 | \n", "84 | \n", "77 | \n", "82 | \n", "88 | \n", "85 | \n", "90 | \n", "80 | \n", "84 | \n", "67 | \n", "... | \n", "79 | \n", "81 | \n", "85 | \n", "77 | \n", "75 | \n", "54 | \n", "DEF | \n", "Marcelo | \n", "Brazil | \n", "Real Madrid CF | \n", "
51 | \n", "84 | \n", "82 | \n", "79 | \n", "79 | \n", "81 | \n", "82 | \n", "86 | \n", "78 | \n", "82 | \n", "55 | \n", "... | \n", "88 | \n", "93 | \n", "84 | \n", "80 | \n", "70 | \n", "68 | \n", "MID | \n", "Alex Sandro | \n", "Brazil | \n", "Juventus | \n", "
54 | \n", "88 | \n", "55 | \n", "92 | \n", "92 | \n", "88 | \n", "85 | \n", "77 | \n", "84 | \n", "88 | \n", "74 | \n", "... | \n", "77 | \n", "80 | \n", "44 | \n", "61 | \n", "87 | \n", "75 | \n", "MID | \n", "Coutinho | \n", "Brazil | \n", "Liverpool | \n", "
5 rows \u00d7 38 columns
\n", "