
Solving Linear System of Equations

The “Undo” button for Linear Operations
Matrix-vector multiplication: given the data ! and the operator ",
we can find # such that

= " !

What if we know # but not !? How can we “undo” the
transformation?

! #
"

transformation

"%&# !
?

Solve " ! = # for !

Image Blurring Example

• Image is stored as a 2D array of real numbers between 0 and 1
(0 represents a white pixel, 1 represents a black pixel)

• !"#$ contains the 2D data (the image) with dimensions 100x40
• Flatten the 2D array as a 1D array
• ! contains the 1D data with dimension 4000,
• Apply blurring operation to data !, i.e.

& = (!
where (is the blur operator and & is the blurred image

Blur operator

! = # $

"original”
image

(4000,)

blurred
image

(4000,)

Blur operator
(4000,4000)

Blur operator

$

!
#

”Undo” Blur to recover original image

Solve
! " = $

for "

Assumptions:
1. we know the blur

operator !
2. the data set $ does not

have any noise (“clean
data” "

$

”Undo” Blur to recover original image

Solve ! " = $ for "

$ + & ∗ 10*+ (& ∈ 0,1)

How much noise can we add and still be able to recover meaningful information from the original
image? At which point this inverse transformation fails?

We will talk about sensitivity of the “undo” operation later.

$ + & ∗ 10*0 (& ∈ 0,1)

Linear System of Equations

We can start with an “easier” system of equations…

How do we actually solve ! " = $?

Let’s consider triangular matrices (lower and upper):

%&& 0
%(& %((

… 0
… 0

⋮ ⋮
%+& %+(

⋱ ⋮
… %++

-&
-(
⋮
-+

=
.
.(
⋮
.+

/&& /&(
0 /((

… /&+
… /(+

⋮ ⋮
0 0

⋱ ⋮
… /++

-&
-(
⋮
-+

=
.
.(
⋮
.+

2 0
3 2

0 0
0 0

1 2
1 3

6 0
4 2

'(
')'*
'+

=
2
2
6
4

Example: Forward-substitution for lower
triangular systems

2 '(= 2 → '(= 1

3 '(+ 2 ') = 2 → ')=
2 − 3
2 = −0.5

1 '(+ 2 ') + 6 '* = 6 → '*=
6 − 1 + 1

6 = 1.0

1 '(+ 3 ') + 4 '* + 2 '+ = 4 → '*=
4 − 1 + 1.5 − 4

2 = 0.25 '(
')'*
'+

=
1

−0.5
1.0
0.25

Triangular Matrices
!"" !"#
0 !##

… !"&
… !#&

⋮ ⋮
0 0

⋱ ⋮
… !&&

)"
)#
⋮
)&

=
+
+#
⋮
+&

)" , : , 1 +)# , : , 2 + ⋯+)& , : , 3 = 4
Hence we can write the solution as

!&&)& = +&

Recall that we can also write 5 6 = 4 as a linear combination of the columns of 5

)" , : , 1 + ⋯+)&7" , : , 3 − 1 = 4 −)& , : , 3 → !&7",&7")&7" = +&7" − !&7",&)&
)" , : , 1 + ⋯+)&7# , : , 3 − 2 = 4 −)& , : , 3 −)&7" , : , 3 − 1

Or in general (backward-substitution for upper triangular systems):

):=
+: − ∑<=:>"& !:<)<

!::
, ? = 3 − 1, 3 − 2,… , 1)& = +&/!&&

Forward-substitution for lower-triangular systems:

!"=
$" − ∑'()"*) +"'!'

+""
, - = 2,3, … , 1!) = $)/+))

+)) 0
+4) +44

… 0
… 0

⋮ ⋮
+6) +64

⋱ ⋮
… +66

!)
!4
⋮
!6

=
$
$4
⋮
$6

Triangular Matrices

Cost of solving triangular systems

!"=
$" − ∑'(")*+ ,"'!'

,""
, . = / − 1, / − 2,… , 1!+ = $+/,++

/ divisions
/ / − 1 /2 subtractions/additions
/ / − 1 /2 multiplications

Computational complexity is 4(/6)

/ divisions
/ / − 1 /2 subtractions/additions
/ / − 1 /2 multiplications

Computational complexity is 4(/6)

!"=
$" − ∑'(*"8* 9"'!'

9""
, . = 2,3, … , /!* = $*/9**

Linear System of Equations
How do we solve ! " = $ when ! is a non-triangular matrix?

We can perform LU factorization: given a %×% matrix !,
obtain lower triangular matrix ' and upper triangular matrix
(such that

where we set the diagonal entries of ' to be equal to 1.

! = '(

1 0
+,- 1

… 0
… 0

⋮ ⋮
+0- +0,

⋱ ⋮
… 1

2-- 2-,
0 2,,

… 2-0
… 2,0

⋮ ⋮
0 0

⋱ ⋮
… 200

=
3-- 3-,
3,- 3,,

… 3-0
… 3,0

⋮ ⋮
30- 30,

⋱ ⋮
… 300

LU Factorization
1 0
#$% 1

… 0
… 0

⋮ ⋮
#(% #($

⋱ ⋮
… 1

*%% *%$
0 *$$

… *%(
… *$(

⋮ ⋮
0 0

⋱ ⋮
… *((

=
,%% ,%$
,$% ,$$

… ,%(
… ,$(

⋮ ⋮
,(% ,($

⋱ ⋮
… ,((

-. / = 0

- 1 = 0 Forward-substitution with complexity 2(4$)

. / = 1

Solve for 1

Backward-substitution with complexity 2(4$)
Solve for /

Assuming the LU factorization is know, we can solve the general system

By solving two triangular systems:

But what is the cost of the LU factorization? Is it beneficial?

2x2 LU Factorization (simple example)
!"" !"#
!#" !## = 1 0

'#" 1
("" ("#
0 (##

!"" !"#
!#" !## = ("" ("#

'#"("" '#"("# + (##

2) '#" = !#"/("" 3) (## = !## − '#"("#

Seems quite simple! Can we generalize this for a ,×, matrix .?

("" = !#"/(""

LU Factorization

!"" !"#
!#" !##

… !"%
… !#%

⋮ ⋮
!%" !%#

⋱ ⋮
… !%%

=)"" *"#
*#" +## = 1 -

.#" /##
0"" 1"#
- 2##

)"" *"#

*#"
+##

)"": scalar
*"#: row vector (1×(6 − 1))
*#": column vector (6 − 1)×1
+##: matrix (6 − 1)×(6 − 1)

)"" *"#
*#" +## = 0"" 1"#

0"" .#" .#"1"# + /##2##

1) First row of 2 is
the first row of +

.#" = "
:;;
*#"

3) /##2## = +## − .#"1"#
Need another factorization!

Known!

2) First column of / is the
first column of +/ 0""

+## = .#"1"# + /##2##

LU Factorization

!"" !"#
!#" !##

… !"%
… !#%

⋮ ⋮
!%" !%#

⋱ ⋮
… !%%

=)"" *"#
*#" +## = 1 -

.#" /##
0"" 1"#
- 2##

)"" *"#

*#"
+##

)"": scalar
*"#: row vector (1×(6 − 1))
*#": column vector (6 − 1)×1
+##: matrix (6 − 1)×(6 − 1)

)"" *"#
*#" +## = 0"" 1"#

0"" .#" .#"1"# + /##2##

1) First row of 2 is
the first row of +

2) .#" = "
:;;
*#"

3) < = /##2## = +## − .#"1"#
Need another factorization!

Known!

First column of / is the first
column of +/ 0""

Example

! =
2 8
1 2

4 1
3 3

1 2
1 3

6 2
4 2

1) First row of) is the first row of *
2) First column of + is the first column of */ ,--
3) +..).. = *.. − 0.-1-.

Example

! =
2 8
1 2

4 1
3 3

1 2
1 3

6 2
4 2

) =
2 8
0 0

4 1
0 0

0 0
0 0

0 0
0 0

+ =
1 0
0.5 0

0 0
0 0

0.5 0
0.5 0

0 0
0 0

! =
2 8
1 −2

4 1
1 2.5

1 −2
1 −1

4 1.5
2 1.5

) =
2 8
0 −2

4 1
1 2.5

0 0
0 0

0 0
0 0

+ =
1 0
0.5 1

0 0
0 0

0.5 1
0.5 0.5

0 0
0 0

! =
2 8
1 −2

4 1
1 2.5

1 −2
1 −1

3 −1
1.5 0.25

) =
2 8
0 −2

4 1
1 2.5

0 0
0 0

3 −1
0 0

+ =
1 0
0.5 1

0 0
0 0

0.5 1
0.5 0.5

1 0
0.5 0

) =
2 8
0 −2

4 1
1 2.5

0 0
0 0

3 −1
0 0.75

+ =
1 0
0.5 1

0 0
0 0

0.5 1
0.5 0.5

1 0
0.5 1

! =
2 8
1 −2

4 1
1 2.5

1 −2
1 −1

3 −1
1.5 0.75

Algorithm: LU Factorization of matrix A

Cost of LU factorization
!
"#$

%
& = 1

2* * + 1

!
"#$

%
&, = 1

6* * + 1 2* + 1

Side note:

Cost of LU factorization

Number of divisions: ! − 1 + ! − 2 +⋯+ 1 = ! ! − 1 /2
Number of multiplications ! − 1) + ! − 2) + …+ 1) = +,

- −
+.
) +

+
/

Number of subtractions: ! − 1) + ! − 2) + …+ 1) = +,
- −

+.
) +

+
/

Computational complexity is 0(!-)

3
456

7
8 = 1

29 9 + 1

3
456

7
8) = 1

69 9 + 1 29 + 1

Side note:

Demo “Complexity of Mat-Mat multiplication and LU”

Solving linear systems
In general, we can solve a linear system of equations following the steps:

1) Factorize the matrix ! : ! = #$ (complexity %('())

2) Solve # * = + (complexity %(',))

3) Solve $ - = * (complexity %(',))

But why should we decouple the factorization from the actual solve?
(Remember from Linear Algebra, Gaussian Elimination does not
decouple these two steps…)

Example: Optimization of automotive
control arm

Find the distribution of material inside the design space (") that maximizes the stiffness, i.e.,

min'() where * " ' =) (': displacement vector,): load vector, *: stiffness matrix)

Solve the linear system of equations
*' =)

for the load vector). What if we have many different loading conditions (pothole, hitting a
curb, breaking, etc)?

Iclicker question
Let’s assume that when solving the system of equations !" = $, we observe the
following:

• When the stiffness matrix has dimensions (100,100), computing the LU factorization
takes about 1 second and each solve (forward + backward substitution) takes about
0.01 seconds.

Estimate the total time it will take to find the displacement response corresponding to
10 different load vectors $ when the stiffness matrix has dimensions (1000,1000)?

%) ~10 *+,-./*
0) ~101 *+,-./*
2) ~103 *+,-./*
4) ~105 *+,-./*
6) ~107 *+,-./*

What can go wrong with the previous
algorithm?

If division by zero occurs, LU factorization fails.

What can we do to get something like an LU factorization?

What can go wrong with the previous
algorithm?

! =
2 8
1 &

4 1
3 3

1 2
1 3

6 2
4 2

* =
2 8
0 0

4 1
0 0

0 0
0 0

0 0
0 0

, =
1 0
0.5 0

0 0
0 0

0.5 0
0.5 0

0 0
0 0

!− 012321 =
2 8
1 4

4 1
1 2.5

1 −2
1 −1

4 1.5
2 1.5

012321 =
4 2 0.5
4 2 0.5
4 2 0.5

The next update for the lower triangular matrix will result in a
division by zero! LU factorization fails.

What can we do to get something like an LU factorization?

Demo “Little c”

Pivoting
Approach:
1. Swap rows if there is a zero entry in the diagonal
2. Even better idea: Find the largest entry (by absolute value) and

swap it to the top row.

The entry we divide by is called the pivot.

Swapping rows to get a bigger pivot is called (partial) pivoting.

!"" #"$
#$" %$$ = '"" ("$

'"")$")$"("$ + +$$,$$

Find the largest entry (in magnitude)

LU Factorization with Partial Pivoting

where ! is a permutation matrix

Then solve two triangular systems:

" = !$%

$ & = !'(

%) = &

(Solve for &)

(Solve for))

") = (→ !$%) = (→ $%) = !'(

Example

! = # =
2 8
1 2

4 1
3 3

1 2
1 3

3 2
4 2

) =
2 8
0 0

4 1
0 0

0 0
0 0

0 0
0 0

+ =
1 0
0.5 0

0 0
0 0

0.5 0
0.5 0

0 0
0 0

=
2 8
1 −2

4 1
1 2.5

1 −2
1 −1

1 1.5
2 1.5

) =
2 8
0 −2

4 1
1 2.5

0 0
0 0

0 0
0 0

+ =
1 0
0.5 1

0 0
0 0

0.5 1
0.5 0.5

0 0
0 0

=
2 8
1 −2

4 1
1 2.5

1 −2
1 −1

0 −1
1.5 0.25

=
2 8
1 −2

4 1
1 2.5

1 −1
1 −2

1.5 0.25
0 −1

) =
2 8
0 −2

4 1
1 2.5

0 0
0 0

1.5 0.25
0 −1

) =
2 8
0 −2

4 1
1 2.5

0 0
0 0

0 0
0 0

+ =
1 0
0.5 1

0 0
0 0

0.5 0.5
0.5 1.0

0 0
0 0

+ =
1 0
0.5 1

0 0
0 0

0.5 0.5
0.5 1.0

1.0 0
0 1.0

Demo “Pivoting example”

! =
2 1
4 3

1 0
3 1

8 7
6 7

9 5
9 8

- =
8 7
0 0

9 5
0 0

0 0
0 0

0 0
0 0

. =
1 0
0.5 0

0 0
0 0

0.25 0
0.75 0

0 0
0 0

0! = 1! =
0 0
0 1

1 0
0 0

1 0
0 0

0 0
0 1

2 1
4 3

1 0
3 1

8 7
6 7

9 5
9 8

=
8 7
4 3

9 5
3 1

2 1
6 7

1 0
9 8

0! − 345654 =
8 7
4 −0.5

9 5
−1.5 −1.5

2 −0.75
6 1.75

−1.25 −1.25
2.25 4.25

345654 =
3.5 4.5 2.5
1.75 2.25 1.25
5.25 6.75 3.75

Demo “Pivoting example”

! =
8 7
0 1.75

9 5
2.25 4.25

0 0
0 0

0 0
0 0

, =
1 0
0.75 1

0 0
0 0

0.25 −0.428
0.5 −0.285

0 0
0 0

./ = 0./ =
0 0
0 0

1 0
0 1

1 0
0 1

0 0
0 0

8 7
6 1.75

9 5
2.25 4.25

2 −0.75
4 −0.5

−1.25 −1.25
−1.5 −1.5

=
8 7
6 1.75

9 5
2.25 4.25

2 −0.75
4 −0.5

−1.25 −1.25
−1.5 −1.5

./ = ./ − 234543 =
8 7
4 −0.5

9 5
−1.5 −1.5

2 −0.75
6 1.75

−1.25 −1.25
2.25 4.25

234543 = −0.963 −1.819
−0.6412 −1.2112

./ = ./ − 234543 =
8 7
6 1.75

9 5
2.25 4.25

2 −0.75
4 −0.5

−0.287 0.569
−0.8587 −0.2887

Demo “Pivoting example”

! =
8 7
0 1.75

9 5
2.25 4.25

0 0
0 0

−0.86 −0.29
0 0

. =
1 0
0.75 1

0 0
0 0

0.5 −0.285
0.25 −0.428

1 0
0.334 0

01 = 201 =
0 0
0 0

1 0
0 1

0 1
1 0

0 0
0 0

8 7
6 1.75

9 5
2.25 4.25

2 −0.75
4 −0.5

−0.287 0.569
−0.8587 −0.2887

=
8 7
6 1.75

9 5
2.25 4.25

4 −0.5
2 −0.75

−0.8587 −0.2887
−0.287 0.569

01 = 01 − 345654 =
8 7
6 1.75

9 5
2.25 4.25

2 −0.75
4 −0.5

−0.287 0.569
−0.8587 −0.2887

! =
8 7
0 1.75

9 5
2.25 4.25

0 0
0 0

−0.86 −0.29
0 0.67

. =
1 0
0.75 1

0 0
0 0

0.5 −0.285
0.25 −0.428

1 0
0.334 1

2 =
0 0
0 0

1 0
0 1

0 1
1 0

0 0
0 0

Numerical experiments
Input has uncertainties:

• Errors due to representation with finite precision
• Error in the sampling

Once	you	select	your	numerical	method	,	how	much	error	
should	you	expect	to	see	in	your	output?

Is	your	method	sensitive	to	errors	(perturbation)	in	the	input?

Demo “HilbertMatrix-ConditionNumber”

Solve ! " = $ for "

$ + & ∗ 10*+ (& ∈ 0,1) $ + & ∗ 10*0 (& ∈ 0,1)

Is	your	method	sensitive	to	errors	(perturbation)	in	the	input?
How	much	noise	can	we	add	to	the	input	data?	
How	can	we	define	“little”	amount	of	noise?		Should	be	relative	with	the	
magnitude	of	the	data.	

Sensitivity of Solutions of Linear Systems
Suppose we start with a non-singular system of linear equations ! " = $.

We change the right-hand side vector $ (input) by a small amount Δ$.

How much the solution " (output) changes, i.e., how large is Δ"?

Output Relative error
Input Relative error = Δ" / "

Δ$ / $ = Δ" $
Δ$ "

! 5" = 6$ → ! 5" = !(" + Δ") = ($ + Δ$) → ! Δ" = Δ$

Output Relative error
Input Relative error = !;< Δ$! "

Δ$ " ≤ !;< Δ$! "
Δ$ "

Δ"
" ≤ !;< ! Δ$

$

Sensitivity of Solutions of Linear Systems
We can also add a perturbation to the matrix ! (input) by a small
amount ", such that

(! + ") &' =)

and in a similar way obtain:

Δ'
' ≤ !,- ! "

!

Condition number
The condition number is a measure of sensitivity of solving a linear system
of equations to variations in the input.

The condition number of a matrix !:

"#$% ! = !'(!

Recall that the induced matrix norm is given by

! = max, -(!,

And since the condition number is relative to a given norm, we should be
precise and for example write:

"#$%. ! or "#$%/ !

Demo “HilbertMatrix-ConditionNumber”

Iclicker question
Give an example of a matrix that is very well-conditioned (i.e.,
has a condition number that is good for computation). Select
the best possible condition number(s) of a matrix?

A) #$%& ' < 0
B) #$%& ' = 0
C) 0 < #$%& ' < 1
D) #$%& ' = 1
E) #$%& ' = large numbers

Δ:
: ≤ #$%& ' Δ<

<

Condition number
Δ"
" ≤ $%&' (Δ)

)

Small condition numbers mean not a lot of error amplification. Small
condition numbers are good!

The identity matrix should be well-conditioned:

* = max" /0 * " = 1

It turns out that this is the smallest possible condition number:

$%&' (= (20 (≥ (20(= * = 1

If (20 does not exist, then $%&' (= ∞ (by convention)

Recall Induced Matrix Norms

! " = max' (
)*"

+
,)'

! - = max) (
'*"

+
,)'

! . = max/ 0/

0/ are the singular value of the matrix !

Maximum absolute column sum of the matrix !

Maximum absolute row sum of the matrix !

Iclicker question

A) 1
B) 50
C) 100
D) 200

About condition numbers
1. For any matrix !, "#$% ! ≥1

2. For the identity matrix ', "#$% ' = 1

3. For any matrix ! and a nonzero scalar +, "#$% +! = "#$% !

4. For any diagonal matrix ,, "#$% , = -./ 01
-12 01

“Little c” demo
Discuss what happens when c is ”close” to zero
What are the eigenvalues of triangular matrices?
We need to pivot!

Remarks:
The need for pivoting does not depend on whether the matrix is singular.
A non-singular matrix always has a solution.
A singular matrix may not have a solution, or may have infinitely many
solutions.

Iclicker question
The need for pivoting depends on whether the matrix is
singular.

A) True
B) False

A)
B)
C)
D)

About condition numbers
1. For any matrix !, "#$% ! ≥1

2. For the identity matrix ', "#$% ' = 1

3. For any matrix ! and a nonzero scalar +, "#$% +! = "#$% !

4. For any diagonal matrix ,, "#$% , = -./ 01
-12 01

5. The condition number is a measure of how close a matrix is to being
singular: a matrix with large condition number is nearly singular,
whereas a matrix with a condition number close to 1 is far from being
singular

6. The determinant of a matrix is NOT a good indicator is a matrix is near
singularity

Condition Number of Orthogonal
Matrices

What is the 2-norm condition number of an orthogonal matrix A?

!"#$ % = %'() %)= %*) %) = 1

That means orthogonal matrices have optimal conditioning.

They are very well-behaved in computation.

Residual versus error
Our goal is to find the solution ! to the linear system of equations " ! = $

Let us recall the solution of the perturbed problem

%! = ! + Δ!

which could be the solution of

" %! = $ + Δ$, " +) %! = $, (" +)) %! = $ + Δ$

And the error vector as
, = Δ! = %! − !

We can write the residual vector as
. = $ − " %!

Relative residual: !
" # (How well the solution satisfies

the problem)

Relative error: $## (How close the approximated
solution is from the exact one)

When solving a system of linear equations via LU with
partial pivoting, the relative residual is guaranteed to be
small!

Demo “Rule of Thumb on Conditioning”

Residual versus error
Let us first obtain the norm of the error:

Δ" = $" − " = &'(& $" − &'() = &'((& $" −)) = −&'(,

Δ"
" ≤ &'(,

" = &'(& ,
& "

Δ"
" ≤ ./01(&) ,

& "

For well-conditioned matrices, small relative residual
implies small relative error.

Residual versus error
Without loss of generality, let us assume that the perturbed solution
!" satisfies

+ % !" = '

Then the residual vector becomes
(= ' − # !" = ' − (' − % !") = % !"

And the norm of the residual is (= % !" ≤ % !" . After
normalizing the residual norm, we obtain

(
!" ≤ %

≤ - ./

Where - is large without pivoting and small with partial pivoting.
Therefore, Gaussian elimination with partial pivoting yields small relative
residual regardless of conditioning of the system.

Rule of thumb for conditioning
Suppose we want to find the solution ! to the linear system of equations
" ! = $ using LU factorization with partial pivoting and backward/forward
substitutions.

Suppose we compute the solution %!.

If the entries in " and $ are accurate to S decimal digits,

and '()* " = +,-,

then the elements of the solution vector %! will be accurate to about

. −0
decimal digits

Iclicker question

A) 3
B) 10
C) 13
D) 16
E) 32

