Singular Value Decomposition (matrix factorization)

Singular Value Decomposition

The SVD is a factorization of a $m \times n$ matrix into

$$A = U \Sigma V^T$$

where U is a $m \times m$ orthogonal matrix, V^T is a $n \times n$ orthogonal matrix and Σ is a $m \times n$ diagonal matrix.

$$\boldsymbol{A} = \begin{pmatrix} \vdots & \dots & \vdots \\ \boldsymbol{u}_1 & \dots & \boldsymbol{u}_m \\ \vdots & \dots & \vdots \end{pmatrix} \begin{pmatrix} \sigma_1 & \ddots & \\ & \ddots & \\ & & \sigma_n \\ & & 0 \end{pmatrix} \begin{pmatrix} \dots & \mathbf{v}_1^T & \dots \\ \vdots & \vdots & \vdots \\ \dots & \mathbf{v}_n^T & \dots \end{pmatrix}$$

 $\sigma_1 \geq \sigma_2 \geq \sigma_3 \dots$

Reduced SVD

What happens when \boldsymbol{A} is not a square matrix?

1)
$$m > n$$

$$\mathbf{A} = \mathbf{U} \, \mathbf{\Sigma} \, \mathbf{V}^T = \begin{pmatrix} \vdots & \dots & \vdots \\ \mathbf{u}_1 & \dots & \mathbf{u}_n \\ \vdots & \dots & \vdots \end{pmatrix} \dots \quad \mathbf{u}_m \\ \vdots & \dots & \vdots \end{pmatrix} \begin{pmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_n \\ & \vdots & \vdots \\ & & \sigma_n \\ & & \vdots \\ & & & \mathbf{v}_n^T & \dots \end{pmatrix}$$

$$m \times m \qquad m \times n \qquad n \times n$$

We can instead re-write the above as:

$$A = U_R \Sigma_R V^T$$

Where U_R is a $m \times n$ matrix and Σ_R is a $n \times n$ matrix

Reduced SVD

2) n > m

$$A = \mathbf{U} \, \mathbf{\Sigma} \, \mathbf{V}^T = \begin{pmatrix} \vdots & \dots & \vdots \\ \mathbf{u}_1 & \dots & \mathbf{u}_m \end{pmatrix} \begin{bmatrix} \sigma_1 & & & & \\ & \ddots & & \\ & & \cdots & \ddots & \\ & & \cdots & \ddots & \\ & & \cdots & \cdots & \\ & & \cdots & \cdots & \\ & & \cdots & \mathbf{v}_n^T & \dots \end{pmatrix}$$

$$n \times m \qquad m \times n \qquad n \times n$$

We can instead re-write the above as:

$$A = U \Sigma_R V_R^T$$

where V_R is a $n \times m$ matrix and Σ_R is a $m \times m$ matrix

In general:

$$A = U_R \Sigma_R V_R^T$$
 $U_R \text{ is a } m \times k \text{ matrix}$
 $\Sigma_R \text{ is a } k \times k \text{ matrix}$
 $V_R \text{ is a } n \times k \text{ matrix}$

 $k = \min(m, n)$

Let's take a look at the product $\Sigma^T \Sigma$, where Σ has the singular values of a A, a $m \times n$ matrix.

$$\mathbf{\Sigma}^{T}\mathbf{\Sigma} = \begin{pmatrix} \sigma_{1} & & & & & \\ & \ddots & & & & \\ & & \sigma_{n} & & & & \\ & & & \sigma_{n} & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

Assume A with the singular value decomposition $A = U \Sigma V^T$. Let's take a look at the eigenpairs corresponding to $A^T A$:

$$A^{T}A = (U \Sigma V^{T})^{T} (U \Sigma V^{T})$$
$$(V^{T})^{T} (\Sigma)^{T}U^{T} (U \Sigma V^{T}) = V\Sigma^{T}U^{T} U \Sigma V^{T} = V \Sigma^{T}\Sigma V^{T}$$

Hence
$$A^T A = V \Sigma^2 V^T$$

Recall that columns of V are all linear independent (orthogonal matrix), then from diagonalization ($B = XDX^{-1}$), we get:

- the columns of V are the eigenvectors of the matrix A^TA
- The diagonal entries of Σ^2 are the eigenvalues of A^TA

Let's call λ the eigenvalues of A^TA , then ${\sigma_i}^2 = \lambda_i$

In a similar way,

$$AA^{T} = (U \Sigma V^{T}) (U \Sigma V^{T})^{T}$$
$$(U \Sigma V^{T}) (V^{T})^{T} (\Sigma)^{T} U^{T} = U \Sigma V^{T} V \Sigma^{T} U^{T} = U \Sigma \Sigma^{T} U^{T}$$

Hence
$$AA^T = U \Sigma^2 U^T$$

Recall that columns of \boldsymbol{U} are all linear independent (orthogonal matrices), then from diagonalization ($\boldsymbol{B} = \boldsymbol{X}\boldsymbol{D}\boldsymbol{X}^{-1}$), we get:

• The columns of \boldsymbol{U} are the eigenvectors of the matrix $\boldsymbol{A}\boldsymbol{A}^T$

How can we compute an SVD of a matrix A?

- 1. Evaluate the n eigenvectors \mathbf{v}_i and eigenvalues λ_i of $\mathbf{A}^T \mathbf{A}$
- 2. Make a matrix V from the normalized vectors \mathbf{v}_i . The columns are called "right singular vectors".

$$oldsymbol{V} = egin{pmatrix} \vdots & \dots & \vdots \\ \mathbf{v}_1 & \dots & \mathbf{v}_n \\ \vdots & \dots & \vdots \end{pmatrix}$$

3. Make a diagonal matrix from the square roots of the eigenvalues.

$$\Sigma = \begin{pmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_n \end{pmatrix} \quad \sigma_i = \sqrt{\lambda_i} \quad \text{and} \quad \sigma_1 \ge \sigma_2 \ge \sigma_3 \dots$$

4. Find $U: A = U \Sigma V^T \Longrightarrow U \Sigma = A V$. The columns are called the "left singular vectors".

Demo "Computing the SVD"

True or False?

A has the singular value decomposition $A = U \Sigma V^T$.

- The matrices \boldsymbol{U} and \boldsymbol{V} are not singular
- The matrix Σ can have zero diagonal entries
- $||U||_2 = 1$
- The SVD exists when the matrix \boldsymbol{A} is singular
- The algorithm to evaluate SVD will fail when taking the square root of a negative eigenvalue

Singular values are always non-negative

Singular values cannot be negative since A^TA is a positive semidefinite matrix (for real matrices A)

- A matrix is positive definite if $x^T B x > 0$ for $\forall x \neq 0$
- A matrix is positive semi-definite if $x^T B x \ge 0$ for $\forall x \ne 0$
- What do we know about the matrix $A^T A$? $x^T A^T A x = (Ax)^T A x = ||Ax||_2^2 \ge 0$
- Hence we know that A^TA is a positive semi-definite matrix
- A positive semi-definite matrix has non-negative eigenvalues

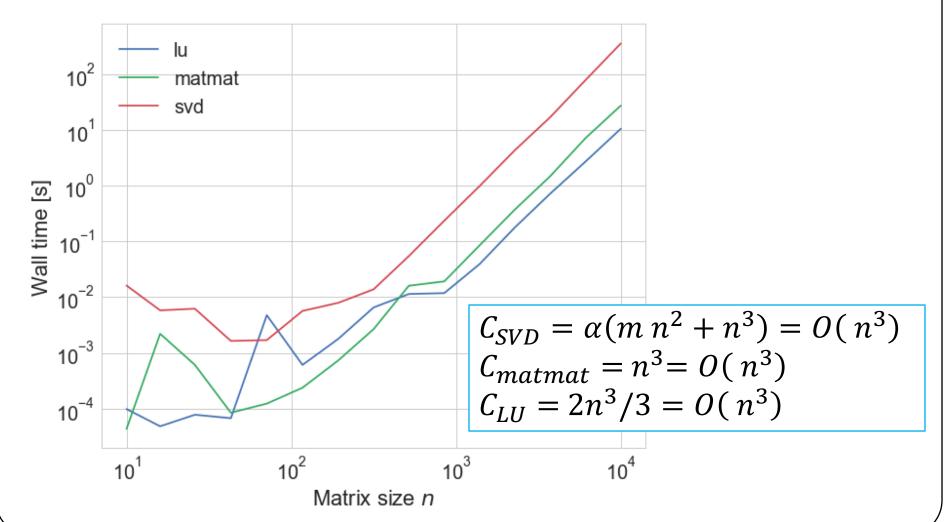
$$Bx = \lambda x \Longrightarrow x^T Bx = x^T \lambda x = \lambda \|x\|_2^2 \ge 0 \Longrightarrow \lambda \ge 0$$

Euclidean norm of orthogonal matrices:

$$||U||_{2} = \max_{\|x\|_{2}=1} ||Ux||_{2} = \max_{\|x\|_{2}=1} \sqrt{(Ux)^{T}(Ux)}$$
$$= \max_{\|x\|_{2}=1} \sqrt{x^{T}x} = \max_{\|x\|_{2}=1} ||x||_{2} = 1$$

Cost of SVD

The cost of an SVD is proportional to $m n^2 + n^3$ where the constant of proportionality constant ranging from 4 to 10 (or more) depending on the algorithm.



SVD summary:

- The SVD is a factorization of a $m \times n$ matrix into $A = U \sum V^T$ where U is a $m \times m$ orthogonal matrix, V^T is a $n \times n$ orthogonal matrix and Σ is a $m \times n$ diagonal matrix.
- In reduced form: $A = U_R \Sigma_R V_R^T$, where U_R is a $m \times k$ matrix, Σ_R is a $k \times k$ matrix, and V_R is a $n \times k$ matrix, and $k = \min(m, n)$.
- The columns of V are the eigenvectors of the matrix A^TA , denoted the right singular vectors.
- The columns of U are the eigenvectors of the matrix AA^T , denoted the left singular vectors.
- The diagonal entries of Σ^2 are the eigenvalues of A^TA . $\sigma_i = \sqrt{\lambda_i}$ are called the singular values.
- The singular values are always non-negative (since A^TA is a positive semi-definite matrix, the eigenvalues are always $\lambda \geq 0$)