
Singular Value Decomposition
(matrix factorization)



Singular Value Decomposition
The SVD is a factorization of a !×# matrix into

$ = & ' ()

where & is a !×! orthogonal matrix, () is a #×# orthogonal matrix 
and ' is a !×# diagonal matrix.
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Reduced SVD
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What happens when ! is not a square matrix?
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Reduced SVD
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Let’s take a look at the product !"!, where ! has the singular values of a $, 
a %×' matrix.
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Assume ! with the singular value decomposition ! = # $ %&. Let’s take a 
look at the eigenpairs corresponding to !&!:



In a similar way,

!!" = $ % &" $ % &" "

$ % &" &" " % "$" = $ % &"&%"$" = $% %"$"

Hence !!" = $ %' $"

Recall that columns of $ are all linear independent (orthogonal matrices), 
then from diagonalization (( = )*)+,), we get:

• The columns of $ are the eigenvectors of the matrix !!"



How can we compute an SVD of a matrix A ?
1. Evaluate the ! eigenvectors "# and eigenvalues $# of %&%
2. Make a matrix ' from the normalized vectors "#. The columns are called 

“right singular vectors”.
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3. Make a diagonal matrix from the square roots of the eigenvalues.
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4. Find  3: % = 3 - '& ⟹ 3 - = % '. The columns are called the “left 
singular vectors”.



True or False?

! has the singular value decomposition ! = # $ %&.

• The matrices # and % are not singular

• The matrix $ can have zero diagonal entries

• # ' = 1

• The SVD exists when the matrix ! is singular

• The algorithm to evaluate SVD will fail when taking the square root 
of a negative eigenvalue



• A matrix is positive definite if !"#! > % for ∀! ≠ %
• A matrix is positive semi-definite if !"#! ≥ % for ∀! ≠ %

Singular values are always non-negative



Euclidean norm of orthogonal matrices:
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Cost of SVD
The cost of an SVD is proportional to !"# + "%where the constant of 
proportionality constant ranging from 4 to 10 (or more) depending on the algorithm.

&'() = + , -. + -/ = 0 -/
&123123 = -/= 0 -/
&45 = 2-//3 = 0 -/



SVD summary:
• The SVD is a factorization of a !×# matrix into $ = & ' () where & is a !×!

orthogonal matrix, () is a #×# orthogonal matrix and ' is a !×# diagonal matrix.

• In reduced form: $ = &*'*(*), where &* is a !×+ matrix, '* is a + ×+ matrix, 
and (* is a #×+ matrix, and + = min(!, #).

• The columns of ( are the eigenvectors of the matrix $)$, denoted the right singular 
vectors.

• The columns of & are the eigenvectors of the matrix $$), denoted the left singular 
vectors.

• The diagonal entries of '2 are the eigenvalues of $)$. 45= 65 are called the singular 
values.

• The singular values are always non-negative (since $)$ is a positive semi-definite matrix, 
the eigenvalues are always 6 ≥ 0)


