Singular Value Decomposition (matrix factorization)

Singular Value Decomposition

The SVD is a factorization of a $m \times n$ matrix into

$A=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\boldsymbol{T}}$

where \boldsymbol{U} is a $m \times m$ orthogonal matrix, $\boldsymbol{V}^{\boldsymbol{T}}$ is a $n \times n$ orthogonal matrix and $\boldsymbol{\Sigma}$ is a $m \times n$ diagonal matrix.
$\boldsymbol{A}=\left(\begin{array}{ccc}\vdots & \ldots & \vdots \\ \boldsymbol{u}_{1} & \ldots & \boldsymbol{u}_{m} \\ \vdots & \ldots & \vdots\end{array}\right)\left(\begin{array}{ccc}\sigma_{1} & & \\ & \ddots & \\ & & \sigma_{n} \\ & & 0 \\ & & \vdots \\ & & 0\end{array}\right)\left(\begin{array}{ccc}\ldots & \mathbf{v}_{1}^{T} & \ldots \\ \vdots & \vdots & \vdots \\ \ldots & \mathbf{v}_{n}^{T} & \ldots\end{array}\right)$
$\sigma_{1} \geq \sigma_{2} \geq \sigma_{3} \ldots$

Reduced SVD

What happens when \boldsymbol{A} is not a square matrix?

1) $m>n$

Reduced SVD

$$
\begin{aligned}
& \text { 2) } n>m \\
& \boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\boldsymbol{T}}=\left(\begin{array}{cccc}
\vdots & \ldots & \vdots \\
\boldsymbol{u}_{1} & \ldots & \boldsymbol{u}_{m} \\
\vdots & \ldots & \vdots
\end{array}\right)\left(\begin{array}{ccccc}
\sigma_{1} & & & 0 & \\
\\
& \ddots & & & \ddots \\
& & \sigma_{m} & & \\
& & & \\
& & & \\
& & & & \\
\vdots & \vdots & \vdots \\
\ldots & \mathbf{v}_{n}^{T} & \ldots
\end{array}\right) \\
& m \times n \\
& n \times n
\end{aligned}
$$

Let's take a look at the product $\boldsymbol{\Sigma}^{\boldsymbol{T}} \boldsymbol{\Sigma}$, where $\boldsymbol{\Sigma}$ has the singular values of a \boldsymbol{A}, a $m \times n$ matrix.

$n>m \quad n \times m$

Assume \boldsymbol{A} with the singular value decomposition $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\boldsymbol{T}}$. Let's take a look at the eigenpairs corresponding to $\boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{A}$:

In a similar way,
$A A^{T}=\left(U \Sigma V^{T}\right)\left(U \Sigma V^{T}\right)^{T}$
$\left(\boldsymbol{U} \Sigma \boldsymbol{V}^{T}\right)\left(\boldsymbol{V}^{\boldsymbol{T}}\right)^{\boldsymbol{T}}(\boldsymbol{\Sigma})^{\boldsymbol{T}} \boldsymbol{U}^{\boldsymbol{T}}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T} \boldsymbol{V} \Sigma^{T} \boldsymbol{U}^{T}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{\Sigma}^{T} \boldsymbol{U}^{T}$

Hence $\boldsymbol{A} \boldsymbol{A}^{\boldsymbol{T}}=\boldsymbol{U} \boldsymbol{\Sigma}^{\mathbf{2}} \boldsymbol{U}^{\boldsymbol{T}}$

Recall that columns of \boldsymbol{U} are all linear independent (orthogonal matrices), then from diagonalization $\left(\boldsymbol{B}=\boldsymbol{X} \boldsymbol{D} \boldsymbol{X}^{\mathbf{- 1}}\right.$), we get:

- The columns of \boldsymbol{U} are the eigenvectors of the matrix $\boldsymbol{A} \boldsymbol{A}^{\boldsymbol{T}}$

How can we compute an SVD of a matrix A?

1. Evaluate the n eigenvectors \mathbf{v}_{i} and eigenvalues λ_{i} of $\boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{A}$
2. Make a matrix \boldsymbol{V} from the normalized vectors \mathbf{v}_{i}. The columns are called "right singular vectors".

$$
\boldsymbol{V}=\left(\begin{array}{ccc}
\vdots & \ldots & \vdots \\
\mathbf{v}_{1} & \ldots & \mathbf{v}_{n} \\
\vdots & \ldots & \vdots
\end{array}\right)
$$

3. Make a diagonal matrix from the square roots of the eigenvalues.

$$
\boldsymbol{\Sigma}=\left(\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{n}
\end{array}\right) \quad \sigma_{i}=\sqrt{\lambda_{i}} \quad \text { and } \quad \sigma_{1} \geq \sigma_{2} \geq \sigma_{3} \ldots
$$

4. Find $\boldsymbol{U}: \boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\boldsymbol{T}} \Rightarrow \boldsymbol{U} \boldsymbol{\Sigma}=\boldsymbol{A} \boldsymbol{V}$. The columns are called the "left singular vectors".

True or False?

\boldsymbol{A} has the singular value decomposition $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\boldsymbol{T}}$.

- The matrices \boldsymbol{U} and \boldsymbol{V} are not singular
- The matrix $\boldsymbol{\Sigma}$ can have zero diagonal entries
- $\|\boldsymbol{U}\|_{2}=1$
- The SVD exists when the matrix \boldsymbol{A} is singular
- The algorithm to evaluate SVD will fail when taking the square root of a negative eigenvalue

Singular values are always non-negative

- A matrix is positive definite if $\boldsymbol{x}^{\boldsymbol{T}} \boldsymbol{B} \boldsymbol{x}>\mathbf{0}$ for $\forall \boldsymbol{x} \neq \mathbf{0}$
- A matrix is positive semi-definite if $\boldsymbol{x}^{\boldsymbol{T}} \boldsymbol{B} \boldsymbol{x} \geq \mathbf{0}$ for $\forall \boldsymbol{x} \neq \mathbf{0}$

Euclidean norm of orthogonal matrices:

$$
\begin{aligned}
\|U\|_{2} & =\max _{\|x\|_{2}=1}\|U x\|_{2}=\max _{\|x\|_{2}=1} \sqrt{(U X)^{T}(U x)} \\
& =\max _{\|x\|_{2}=1} \sqrt{x^{T} x}=\max _{\|x\|_{2}=1}\|x\|_{2}=1
\end{aligned}
$$

Cost of SVD

The cost of an SVD is proportional to $\boldsymbol{m} \boldsymbol{n}^{2}+\boldsymbol{n}^{\mathbf{3}}$ where the constant of proportionality constant ranging from 4 to 10 (or more) depending on the algorithm.

SVD summary:

- The SVD is a factorization of a $m \times n$ matrix into $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\boldsymbol{T}}$ where \boldsymbol{U} is a $m \times m$ orthogonal matrix, $\boldsymbol{V}^{\boldsymbol{T}}$ is a $n \times n$ orthogonal matrix and $\boldsymbol{\Sigma}$ is a $m \times n$ diagonal matrix.
- In reduced form: $\boldsymbol{A}=\boldsymbol{U}_{\boldsymbol{R}} \boldsymbol{\Sigma}_{\boldsymbol{R}} \boldsymbol{V}_{\boldsymbol{R}}{ }^{\boldsymbol{T}}$, where $\boldsymbol{U}_{\boldsymbol{R}}$ is a $m \times k$ matrix, $\boldsymbol{\Sigma}_{\boldsymbol{R}}$ is a $k \times k$ matrix, and $\boldsymbol{V}_{\boldsymbol{R}}$ is a $n \times k$ matrix, and $k=\min (m, n)$.
- The columns of \boldsymbol{V} are the eigenvectors of the matrix $\boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{A}$, denoted the right singular vectors.
- The columns of \boldsymbol{U} are the eigenvectors of the matrix $\boldsymbol{A} \boldsymbol{A}^{\boldsymbol{T}}$, denoted the left singular vectors.
- The diagonal entries of $\boldsymbol{\Sigma}^{\mathbf{2}}$ are the eigenvalues of $\boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{A} . \sigma_{i}=\sqrt{\lambda_{i}}$ are called the singular values.
- The singular values are always non-negative (since $\boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{A}$ is a positive semi-definite matrix, the eigenvalues are always $\lambda \geq 0$)

