
Least Squares and Data Fitting



How do we best fit a set of data points?

Data fitting
Demo ”Linear Regression Examples #1”



Given! data points { #$, &$ , … , #(, &( }, we want to find the function 
& = + + - #

that best fit the data (or better, we want to find the parameters +, -).

Thinking geometrically, we can think ”what is the line that most nearly passes 
through all the points?”

Linear Least Squares – Fitting with a 
line



Linear Least Squares
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• We want to find the appropriate linear combination of the columns of 
. that makes up the vector 0. 

• If a solution exists that satisfies . / = 0 then 0 ∈ 23456(.)

• In most cases, 0 ∉ 23456(.) and . / = 0 does not have an 
exact solution!

• Therefore, an overdetermined system is better expressed as
. / ≅ 0



Linear Least Squares
• Find ! = # $ which is closest to the vector %
• What is the vector ! = # $ ∈ '()*+(#) that is closest to vector ! in 

the Euclidean norm? 



Linear Least Squares
• Least Squares: find the solution ! that minimizes the residual

" = $ − & !

• Let’s define the function ' as the square of the 2-norm of the residual

' ! = $ − & ! ((

• Then the least squares problem becomes
min! ' (!)

• Suppose ':ℛ0 → ℛ is a smooth function, then ' ! reaches a (local) 
maximum or minimum at a point  !∗ ∈ ℛ0 only if 

∇' !∗ = 0



How to find the minimizer?
• To minimize the 2-norm of the residual vector 

min$ % $ = ' − ) $ ** +, % $ = (' − ) $)/(' − ) $)



Summary:
• ! is a "×$ matrix, where " > $. 
• " is the number of data pair points. $ is the number of parameters of the 

“best fit” function.

• Linear Least Squares problem ! & ≅ ( always has solution.

• The Linear Least Squares solution & minimizes the square of the 2-norm 
of the residual:

min& ( − ! & --

• One method to solve the minimization problem is to solve the system of  
Normal Equations

!.! & = !. (

• Let’s see some examples and discuss the limitations of this method.



Example:

!×# # ×$ ! ×$
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⋮ ⋮
1 &)

*
+ ≅

-'
⋮
-)

Demo: “Fit a line - Least Squares example”

Solve: ./. 0 = ./ 2



• Does not need to be a line! For example, here we are fitting the data 
using a quadratic curve.

Data fitting - not always a line fit!

• Linear Least Squares:

The problem is linear in its 
coefficients!

Which function is not suitable for linear 
least squares?

A) # = % + ' ( + ) (* + + (,
B) # = ( % + ' ( + ) (* + + (,
C) # = % sin ( + '/ cos (
D) # = % sin ( + (/ cos '(
E) # = % 78*9 + ' 7*9



More examples
We want to find the 
coefficients of the quadratic 
function that best fits the 
data points:

Demo “Make some noise”

The data points were generated by adding random  noise to the 
function

! " = 0.8 − " + ")
We would not want our “fit” curve to pass through the data points 
exactly as we are looking to model the general trend and not 
capture the noise.

* = +, + +- " + +) ")



Data fitting
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Demo “Make some noise”

(",,*,)

Solve: ./. 0 = ./ 1



Computational Cost
!"! # = !" %

• Compute !"!: & '()

• Factorize !"!: LU  → & )
+(

+ , Cholesky →& ,
+(

+

• Solve & ()

• Since ' > ( the overall cost is & '()



Short questions
Given the data in the 
table below, which of the 
plots shows the line of 
best fit in terms of least 
squares?

A) B)

C) D)



Short questions
Given the data in the table below, and the least squares model

! = #$ + #& sin *+ + #, sin *+/2 + #/ sin *+/4

written in matrix form as

Write the matrix A



Demo: “Ice example”



Condition number for Normal Equations
Finding the least square solution of ! " ≅ $ (where ! is full rank matrix) 
using the Normal Equations 

!%! " = !% $

has some advantages, since we are solving a square system of linear equations 
with a symmetric matrix (and hence it is possible to use decompositions such 
as Cholesky Factorization)

However, the normal equations tend to worsen the conditioning of the 
matrix.

'()* !%! = ('()* ! )-

How can we solve the least square problem without squaring the 
condition of the matrix? 



Rank of a matrix
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⋮ … ⋮ … ⋮
%& … %' … %(
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Suppose ! is a.×0 rectangular matrix where. > 0:

! =
⋮ … ⋮
%& … %'
⋮ … ⋮

… )& ,&- …
⋮ ⋮ ⋮
… )' ,'- …

= )&%&,&- + )3%3,3- + ⋯+ )'%','-



Rank of a matrix
For general rectangular matrix ! with dimensions "×$, the reduced SVD is:
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*
+','-'.

! = /0 1023
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0 0
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If +' ≠ 0 ∀B, then rank ! = 4 (Full rank matrix)

In general, rank ! = number of non-zero singular values +' (Rank deficient) 



• The rank of A equals the number of non-zero singular values which is 
the same as the number of non-zero diagonal elements in Σ.

• Rounding errors may lead to small but non-zero singular values in a 
rank deficient matrix, hence the rank of a matrix determined by the 
number of non-zero singular values is sometimes called “effective rank”.

• The right-singular vectors (columns of !) corresponding to vanishing 
singular values span the null space of A.

• The left-singular vectors (columns of ") corresponding to the non-zero 
singular values of A span the range of A.

Rank of a matrix



Normal Equations: !"! # = !" %

Back to least squares…



SVD to solve linear least squares 
problems

We want to find the least square solution of ! " ≅ $, where ! = & ' ()

or better expressed in reduced form: ! = &* '+ ()

! =
⋮ … ⋮
./ … .0
⋮ … ⋮
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⋱
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0
⋮
0

… 5/6 …
⋮ ⋮ ⋮
… 536 …

! is a7×9 rectangular matrix where 7 > 9, and hence the SVD 
decomposition is given by:



Recall Reduced SVD

! = #$ %& '(

)×+ )×+
+×+

+×+

) > +





SVD to solve linear least squares 
problems

We want to find the least square solution of ! " ≅ $, where ! = &' () *+

! =
⋮ … ⋮
./ … .0
⋮ … ⋮

1/
⋱

10

… 3/4 …
⋮ ⋮ ⋮
… 304 …

! = &' () *+







Solving Least Squares Problem with SVD 
(summary)

• Find ! that satisfies min! % − ' ! ((

• Find ) that satisfiesmin) *+ ) − ,-.% (
(

• Propose ) that is solution of *+ ) = ,-.%

• Evaluate: 0 = ,-.%

• Set:  12 = 3
45
65
, if 92 ≠ 0

0, otherwise
C = 1,… , F

• Then compute ! = G )

Cost:

Cost of SVD:



• If !"≠ 0 for ∀& = 1,… , +, then the solution , = - ./ 01234 5 is 
unique (and not a “choice”). 

• If at least one of the singular values is zero, then the proposed solution , is 
the one with the smallest 2-norm ( , 6 is minimal ) that minimizes the 
2-norm of the residual ./ , − 2345 6

• Since 8 6 = - , 6= , 6, then the solution 8 is also the one with 
the smallest 2-norm ( 8 6 is minimal ) for all possible 8 for which 
98 − 5 6 is minimal.

Solving Least Squares Problem with SVD 
(summary)



Pseudo-Inverse

• Problem: ! may not be invertible

• How to fix it: Define the Pseudo Inverse

• Pseudo-Inverse of a diagonal matrix:

!" # = %
&
'(
, if ,# ≠ 0

0, if ,# = 0

• Pseudo-Inverse of a matrix /:

/" = 0!"12



Solve ! " ≅ $ or %& '()*" ≅ $

" ≅ ) '( + %&, $

Solving Least Squares Problem with SVD 
(summary)

Demo: Least Squares – all together



Consider solving the least squares problem ! " ≅ $, where the singular value decomposition of 
the matrix ! = & ' ()" is:

Determine $ − ! " +

Example:



Iclicker question
Suppose you have ! = # $ %&' calculated. What is the cost of solving

min' + − ! ' -- ?

A) 0(2)
B) 0( 2-)
C) 0(52)
D) 0 5
E) 0( 5-)


