Singular Value Decomposition: many other applications

Matrix norms and condition number

• The Euclidean norm of an orthogonal matrix is equal to 1

$$\|\boldsymbol{U}\|_{2} = \max_{\|\boldsymbol{x}\|_{2}=1} \|\boldsymbol{U}\boldsymbol{x}\|_{2} = \max_{\|\boldsymbol{x}\|_{2}=1} \sqrt{(\boldsymbol{U}\boldsymbol{x})^{T}(\boldsymbol{U}\boldsymbol{x})} = \max_{\|\boldsymbol{x}\|_{2}=1} \sqrt{\boldsymbol{x}^{T}\boldsymbol{x}} = \max_{\|\boldsymbol{x}\|_{2}=1} \|\boldsymbol{x}\|_{2} = 1$$

• The Euclidean norm of a matrix is given by the largest singular value

$$\|A\|_{2} = \max_{\|x\|_{2}=1} \|Ax\|_{2} = \max_{\|x\|_{2}=1} \|U\Sigma V^{T}x\|_{2}$$

Since $\|\boldsymbol{U}\|_2 = 1$, $\|\boldsymbol{V}\|_2 = 1$ and $\boldsymbol{\Sigma}$ is diagonal then

 $\|A\|_2 = \max(\sigma_i) = \sigma_1$

Matrix norms and condition number

• The Euclidean norm of the inverse of a matrix is given by:

$$\|A^{+}\|_{2} = \max_{\|x\|_{2}=1} \left\| (U \Sigma V^{T})^{-1} x \right\|_{2} = \max_{\|x\|_{2}=1} \left\| V \Sigma^{+} U^{T} x \right\|_{2}$$

Since $\|\boldsymbol{U}\|_2 = 1$, $\|\boldsymbol{V}\|_2 = 1$ and $\boldsymbol{\Sigma}$ is diagonal then

$$rank(\mathbf{A}) = min(m, n) \rightarrow \|\mathbf{A}^+\|_2 = \frac{1}{\sigma_{min}}$$

 $rank(A) < min(m,n) \rightarrow \|A^+\|_2 = \infty$

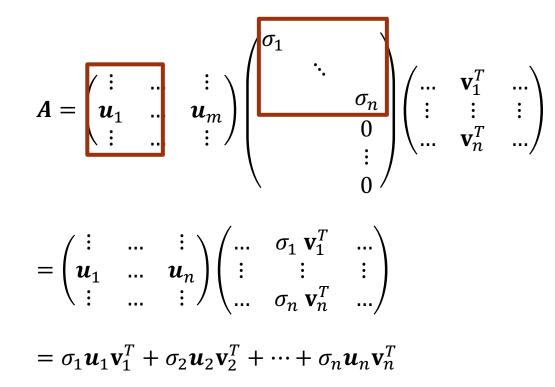
• The condition number of a matrix is given by

$$rank(\mathbf{A}) = min(m, n) \rightarrow cond_2(\mathbf{A}) = \frac{\sigma_{max}}{\sigma_{min}}$$

 $rank(\mathbf{A}) < min(m, n) \rightarrow cond_2(\mathbf{A}) = \infty$

Low-Rank Approximation

Another way to write the SVD (assuming for now m > n for simplicity)



The SVD writes the matrix A as a sum of outer products (of left and right singular vectors).

Low-Rank Approximation

$$\boldsymbol{A} = \sigma_1 \boldsymbol{u}_1 \mathbf{v}_1^T + \sigma_2 \boldsymbol{u}_2 \mathbf{v}_2^T + \dots + \sigma_n \boldsymbol{u}_n \mathbf{v}_n^T \qquad \sigma_1 \ge \sigma_2 \ge \sigma_3 \dots \ge 0$$

What is the rank of $\sigma_1 \boldsymbol{u}_1 \mathbf{v}_1^T$?

One (1 linearly independent column!).

What is the rank of $\sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T$?

Two (2 linearly independent columns!)

Low-Rank Approximation

Demo "Image Compression"

The best **rank-**k approximation for a $m \times n$ matrix A is given by:

$$\boldsymbol{A}_{k} = \sigma_{1}\boldsymbol{u}_{1}\boldsymbol{v}_{1}^{T} + \sigma_{2}\boldsymbol{u}_{2}\boldsymbol{v}_{2}^{T} + \dots + \sigma_{k}\boldsymbol{u}_{k}\boldsymbol{v}_{k}^{T}$$

 $\sigma_1 \ge \sigma_2 \ge \sigma_3 \dots \ge 0$

Note that:

- **A** is full rank if rank(A) = n
- Best **rank-**k approximation A_k has $rank(A_k) = k$
- The error of this approximation can be expressed as:

$$\|\mathbf{A} - \mathbf{A}_{k}\|_{2} = \|\sigma_{k+1}\mathbf{u}_{k+1}\mathbf{v}_{k+1}^{T} + \sigma_{k+2}\mathbf{u}_{k+2}\mathbf{v}_{k+2}^{T} + \dots + \sigma_{n}\mathbf{u}_{n}\mathbf{v}_{n}^{T}\|_{2} = \sigma_{k+1}$$

Principal Component Analysis

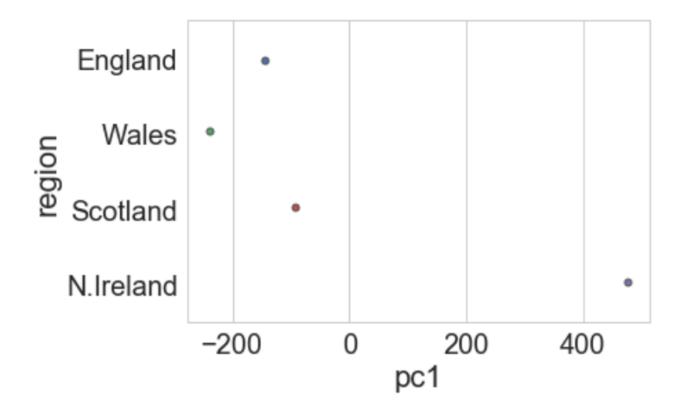
Food consumption in the UK

http://setosa.io/ev/principalcomponent-analysis/

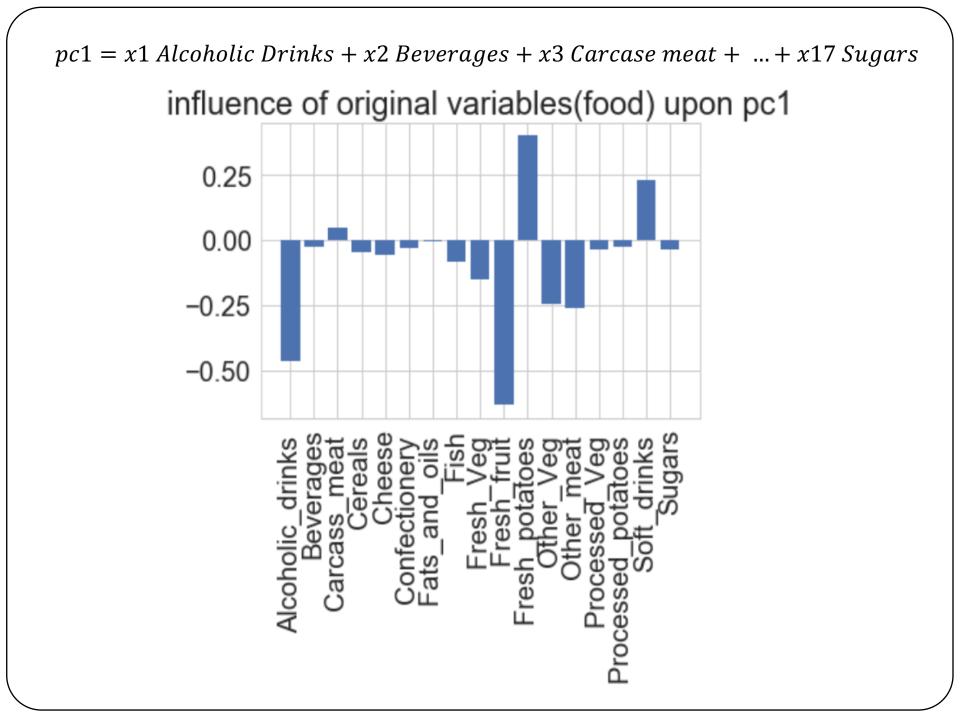
	England	N Ireland	Scotland	Wales
Alcoholic drinks	375	135	458	475
Beverages	57	47	53	73
Carcase meat	245	267	242	227
Cereals	1472	1494	1462	1582
Cheese	105	66	103	103
Confectionery	54	41	62	64
Fats and oils	193	209	184	235
Fish	147	93	122	160
Fresh fruit	1102	674	957	<mark>1</mark> 137
Fresh potatoes	720	1033	566	874
Fresh Veg	253	143	171	265
Other meat	685	586	750	803
Other Veg	488	355	418	570
Processed potatoes	198	187	220	203
Processed Veg	360	334	337	365
Soft drinks	1374	1506	1572	<mark>12</mark> 56
Sugars	156	139	147	175

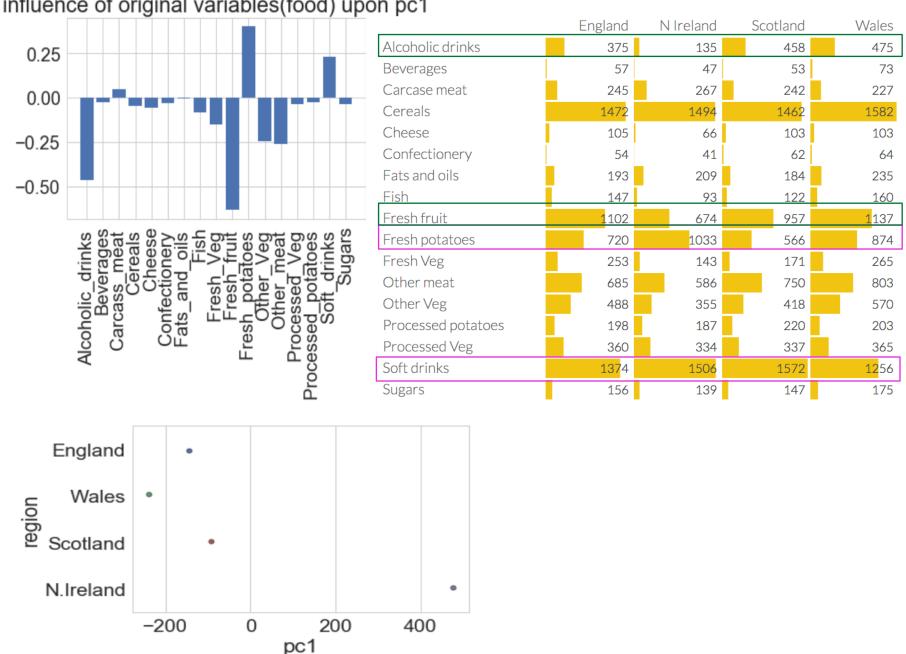
How can we focus in just a few of the variables?

We want to reduce the dimension of the feature space, Let's try to reduce to one dimension:



pc1: Principal component 1 - linear combination of the other 17 variables

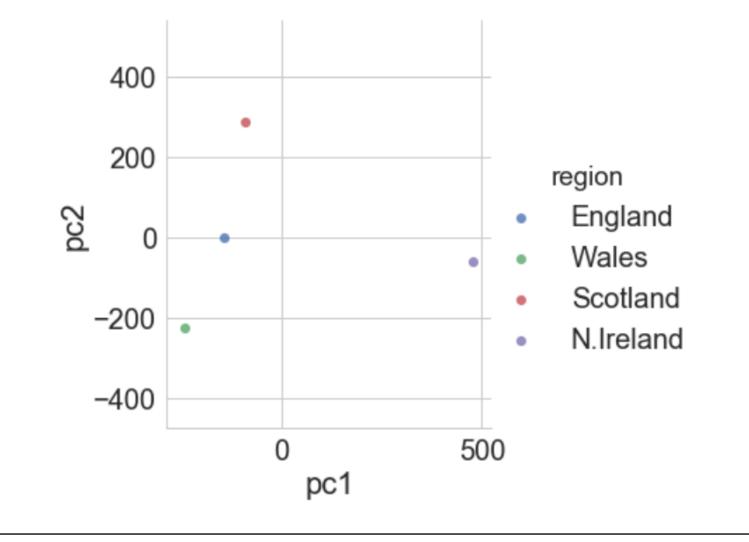


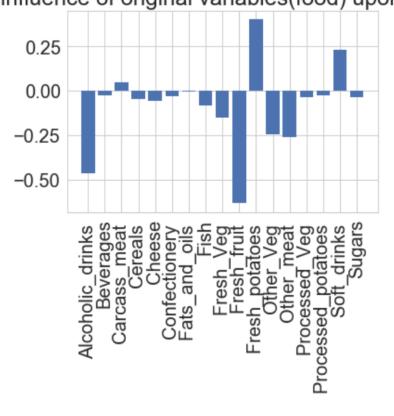


influence of original variables(food) upon pc1

How can we focus in just a few of the variables?

What about reducing to two dimensions?

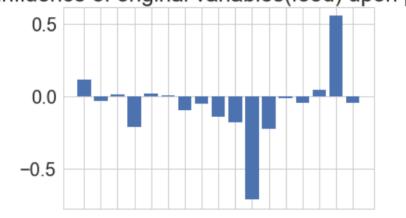




influence of original variables(food) upon pc1

	England	N Ireland	Scotland	Wales
Alcoholic drinks	375	135	458	475
Beverages	57	47	53	73
Carcase meat	245	267	242	227
Cereals	1472	1494	1462	1582
Cheese	105	66	103	103
Confectionery	54	41	62	64
Fats and oils	193	209	184	235
Fish	147	93	122	160
Fresh fruit	<mark>1</mark> 102	674	957	1137
Fresh potatoes	720	1033	566	874
Fresh Veg	253	143	171	265
Other meat	685	586	750	803
Other Veg	488	355	418	570
Processed potatoes	198	187	220	203
Processed Veg	360	334	337	365
Soft drinks	1374	1506	1572	<mark>12</mark> 56
Sugars	156	139	147	175

influence of original variables(food) upon pc2



The three variables, Fresh potatoes, Alcoholic drinks and Fresh fruit, there is a noticeable difference between the values for England, Wales and Scotland, which are roughly similar, and Northern Ireland, which is usually significantly higher or lower.

/						
		England	N Ireland	Scotland	Wales	
ſ	Alcoholic drinks	375	135	458	475]
	Beverages	57	47	53	73	-
	Carcase meat	245	267	242	227	
	Cereals	1472	1494	1462	1582	
	Cheese	105	66	103	103	
	Confectionery	54	41	62	64	
	Fats and oils	193	209	184	235	
Γ	Fish	147	93	122	160	
	Fresh fruit	1102	674	957	<mark>1</mark> 137	nd
	Fresh potatoes	720	1033	566	874	
	Fresh Veg	253	143	171	265	
	Other meat	685	586	750	803	
	Other Veg	488	355	418	570	C
	Processed potatoes	198	187	220	203	Dcea
	Processed Veg	360	334	337	365	
	Soft drinks	1374	1506	1572	<mark>12</mark> 56	N
	Sugars	156	139	147	175	-In

Predicting breast cancer

https://www.kaggle.com/shravank/predictingbreast-cancer-using-pca-lda-in-r

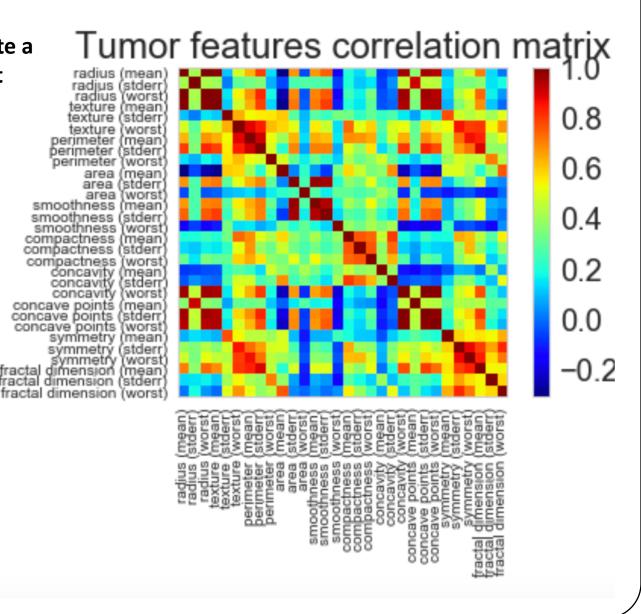
Goal (MP): Use data about tumor cell features to create a model to predict if a breast tumor is malign or benign.

The data includes 30 different cell features.

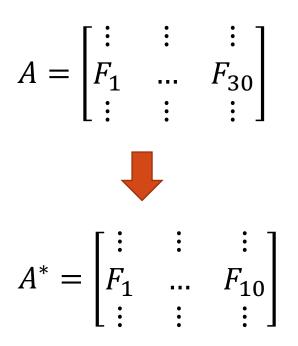
There are many variables that are highly correlated with each other.

Reduce the feature space:

<u>Approach 1</u>: remove some of the feature variables.

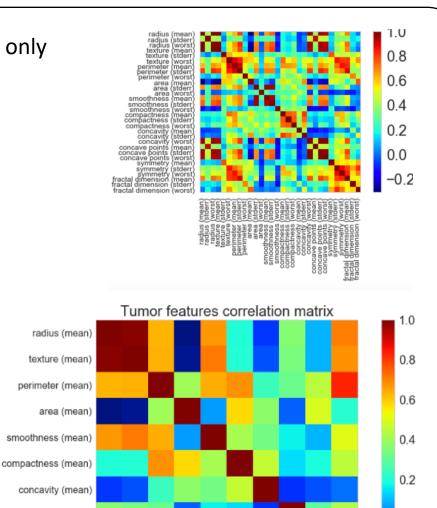


Example: Reduce the feature space by including only the features regarding the mean



PROS: simple and maintain interpretation of the feature variables

CONS: lose information from the variables that were dropped



concavity (mean)

concave points (mean)

symmetry (mean)

smoothness (mean) compactness (mean) fractal dimension (mean)

0.0

-0.2

concave points (mean)

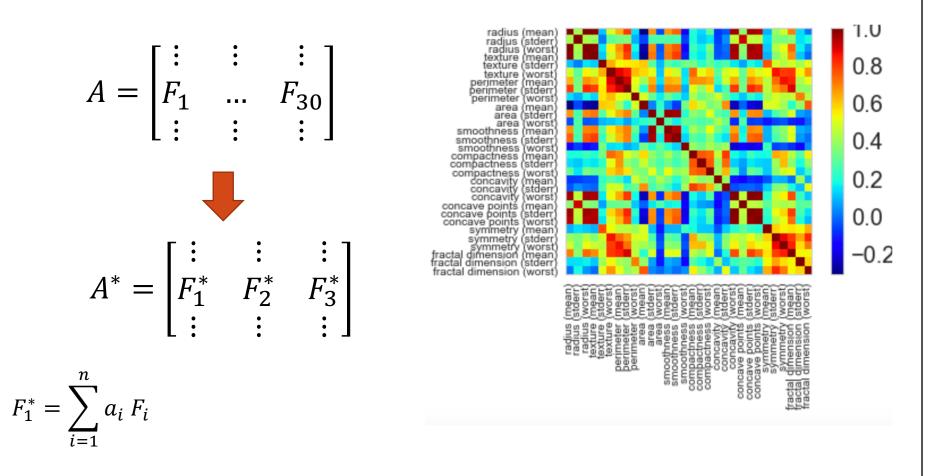
fractal dimension (mean)

symmetry (mean)

exture (mean)

adius (mean)

perimeter (mean) area (mean) Get a new data set, resulting from a linear combination of the original dataset



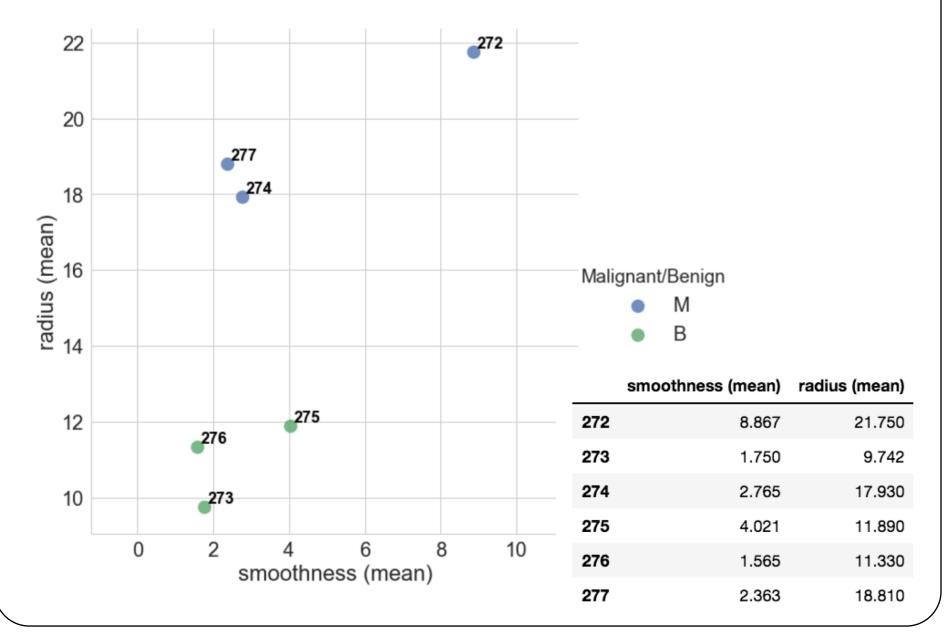
PROS: less variables containing information of all features

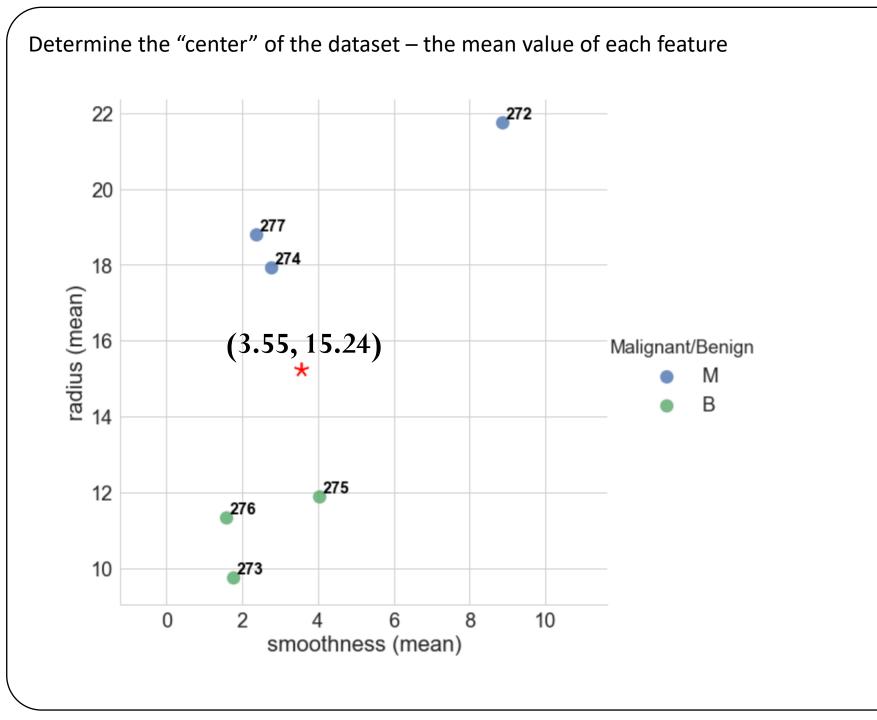
CONS: the new features no longer have a "meaningful" interpretation (here a characteristic of a tumor cell)

Principal component analysis

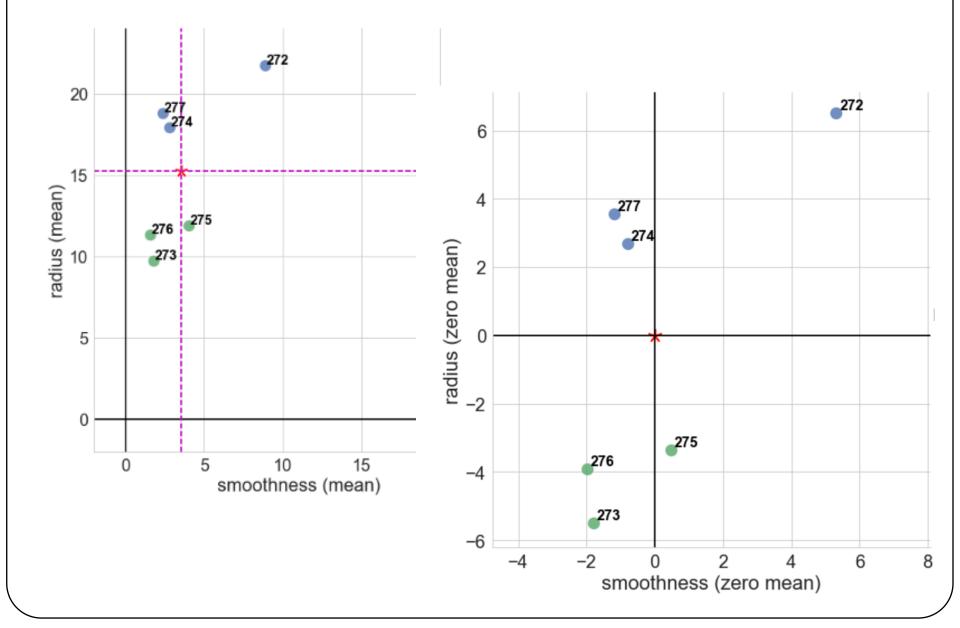
- PCA will combine the feature variables in a specific way, creating "new variables".
- We can now drop the "least important" new variables while still retaining the most valuable parts of all of the feature variables!
- As an added benefit, each of the "new variables" after PCA are all independent of one another (important requirement for linear models).
- Cons: the new variables don't have the same meaning as the feature variables (loss of interpretability)

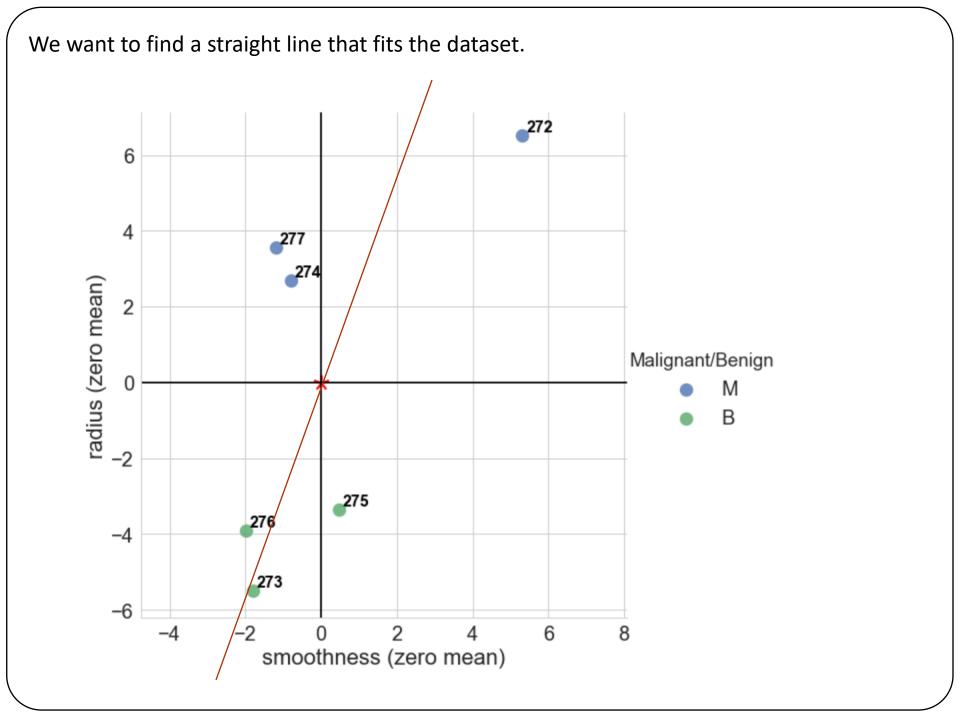
Let's start with a subset of 6 patients, and take a look at only two of the features: smoothness and radius



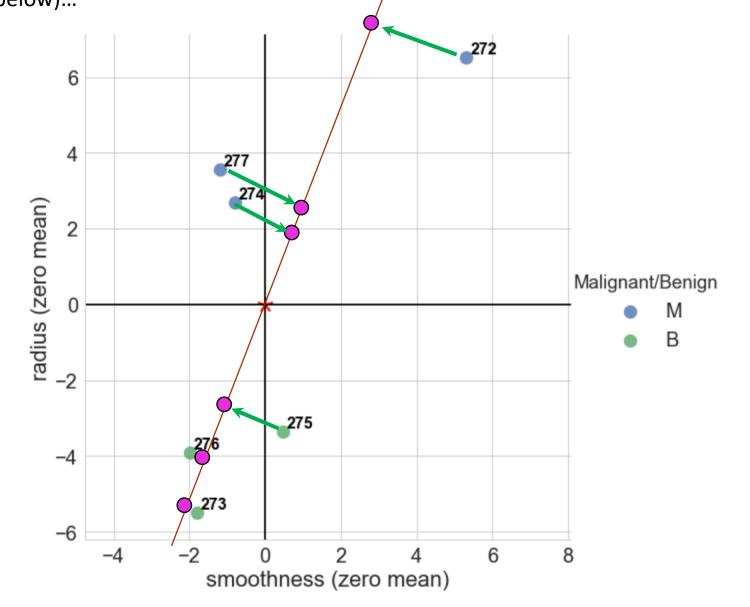


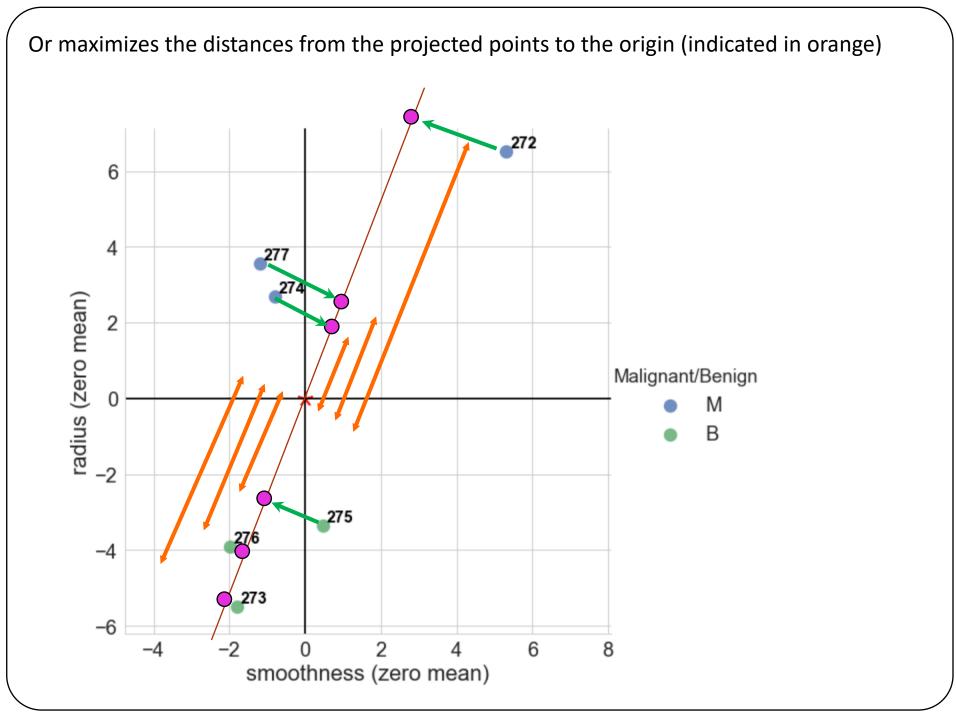
We will shift the dataset such that the "center" of the dataset (mean value) is at the origin (0,0) – the new dataset has zero mean value.

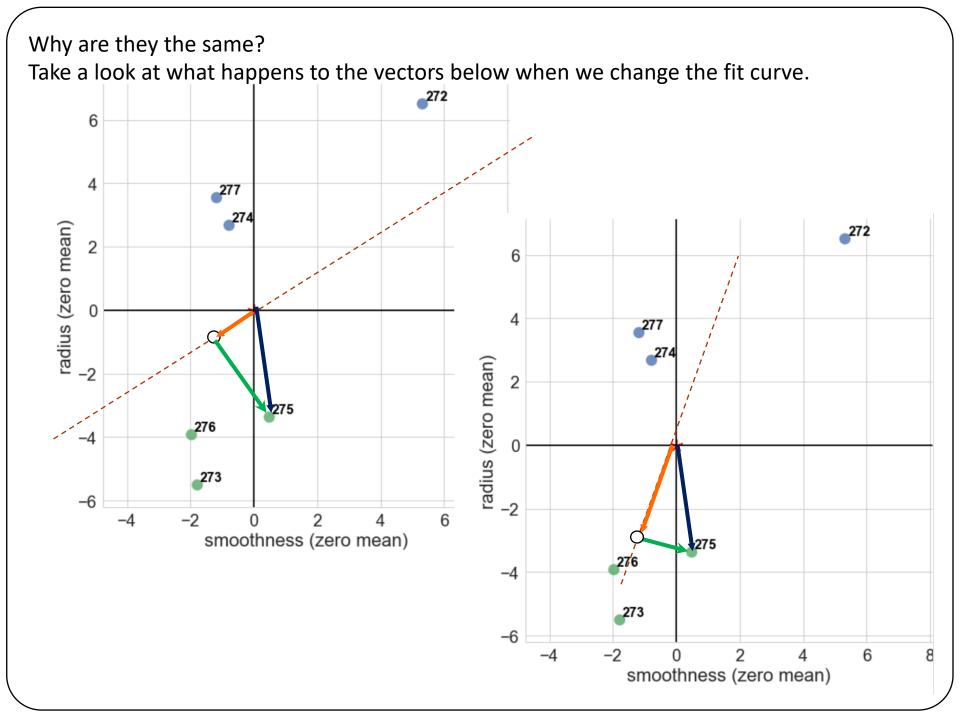


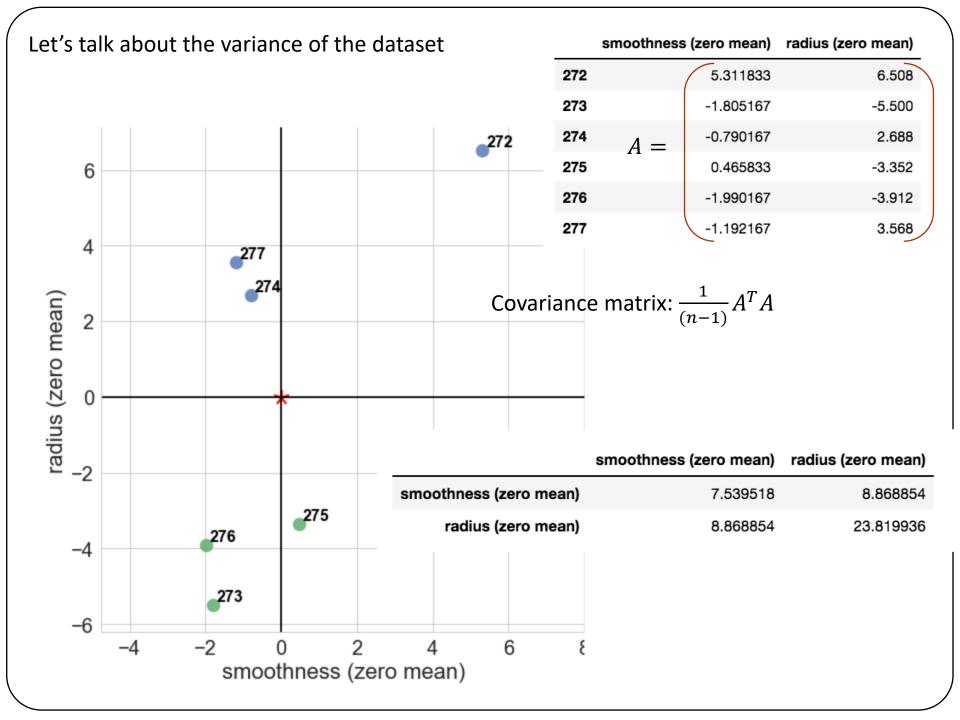


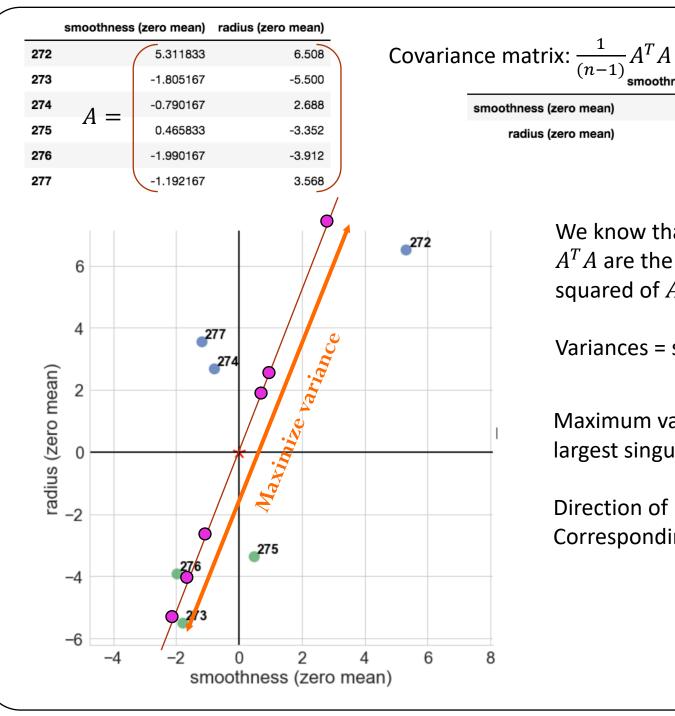
Let's propose the red line below. To quantify how good the fit is, PCA projects the data onto the line. The best fit minimizes the distances from the points to the line (indicated in green below)...











ss (zero mean)	7.539518	8.868854
us (zero mean)	8.868854	23.819936
We know that	t the eigenv	alues of
$\Lambda^T \Lambda$ are the s	ingular valu	

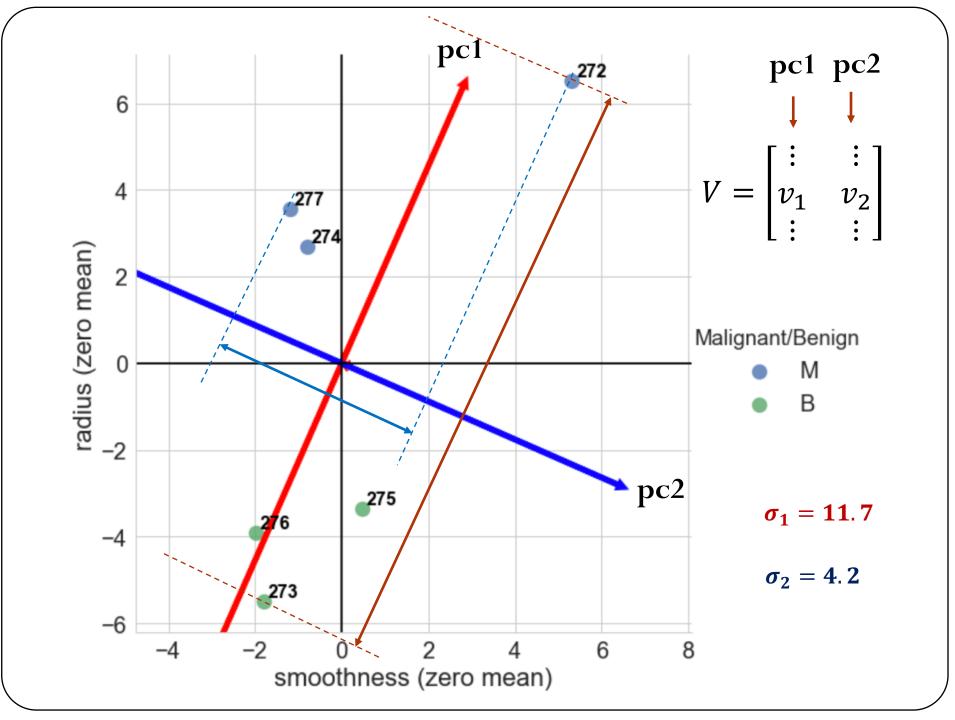
smoothness (zero mean) radius (zero mean)

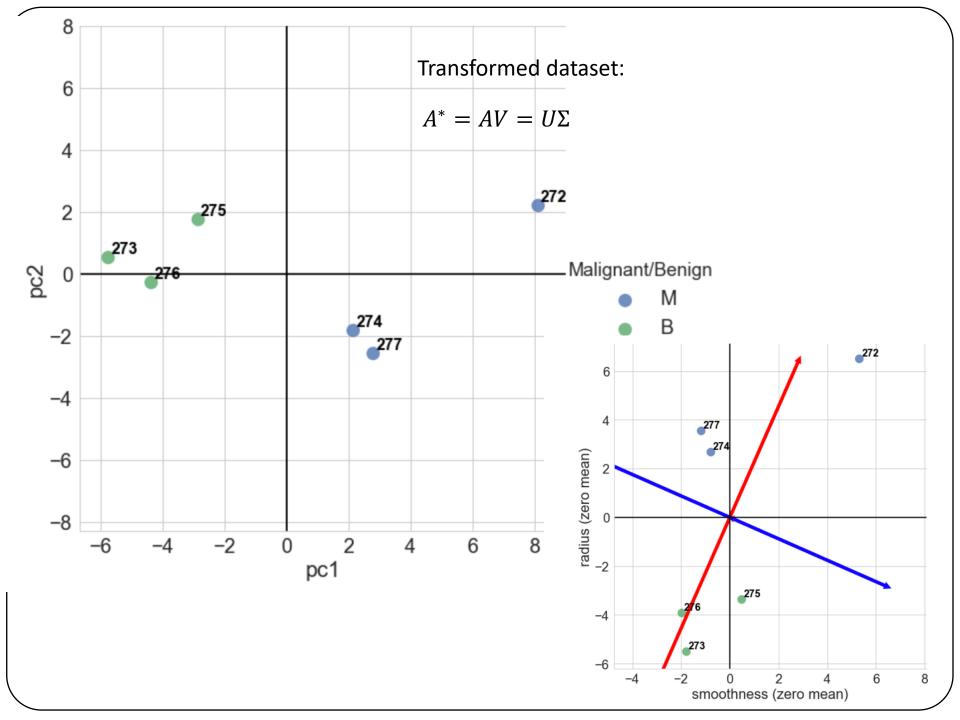
We know that the eigenvalues of $A^T A$ are the singular values squared of $A = U\Sigma V^T$

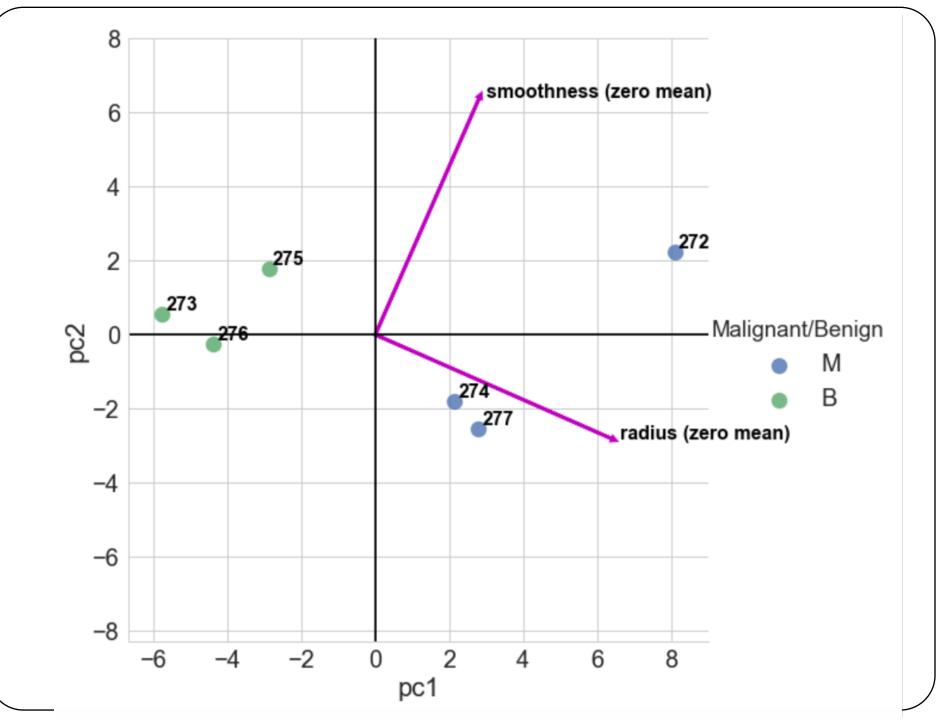
Variances = singular values of A

Maximum variance: largest singular value of Σ

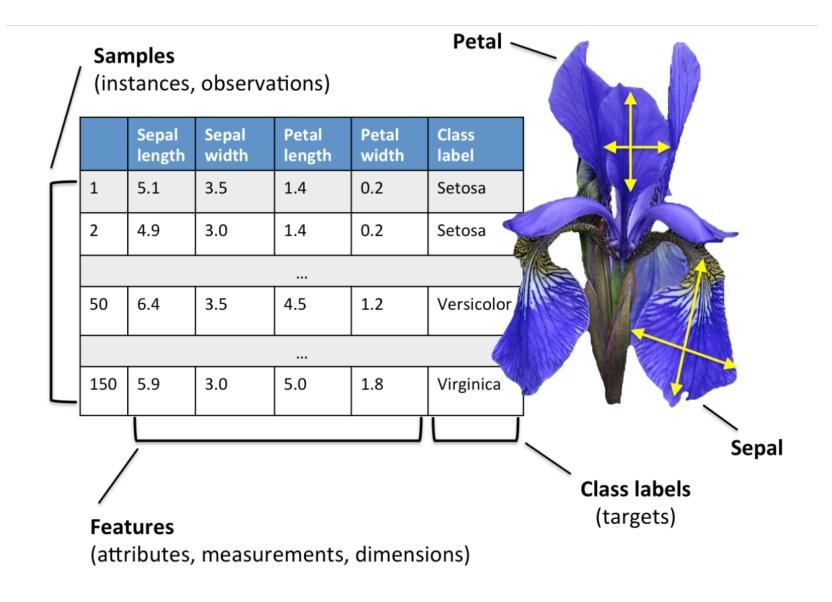
Direction of maximum variance: Corresponding column of V



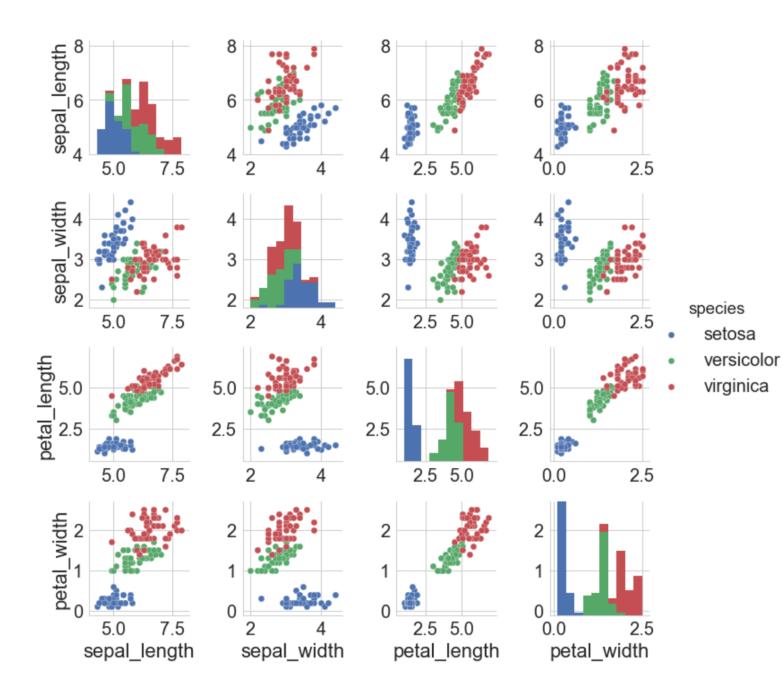




Let's add more features! Flower classification



http://sebastianraschka.com/Articles/2015_pca_in_3_steps.html



Principal component analysis

How can we reduce the dimension of a dataset without missing important information?

Detect correlation between variables, if a strong correlation exists, then reducing the dimension of the dataset makes sense.

Overall idea: Find the directions of maximum variance in highdimensional dataset (n dimension) and project it onto a subspace with smaller dimension (k dimension, with k < n), while retaining most of the information.

What is the adequate value for k?

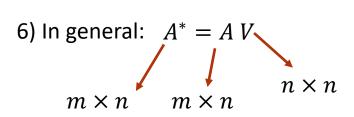
Demo "Features and the SVD"

- 1) Shift the dataset to zero mean: A = A A.mean()
- 2) Compute SVD: $A = U\Sigma V^T$
- 3) Principal components: variances = singular values squared
- 4) Principal directions: columns of V

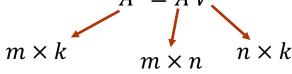
```
5) New dataset: A^* = A V
```

Note how the variances of the new dataset correspond to the singular values squared of the original dataset:

$$(A^*)^T A = V^T A^T A V = V^T (U \Sigma V^T)^T U \Sigma V^T V = \Sigma^T \Sigma$$



7) But since we want to reduce the dimension of the dataset, we only use the first k columns of V $A^* = A V$



Iris dataset	: 1 iris.head()					
	:	sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	setosa
	1	4.9	3.0	1.4	0.2	setosa
	2	4.7	3.2	1.3	0.2	setosa
	3	4.6	3.1	1.5	0.2	setosa
1) Shift the dataset to zero mean:	4	5.0	3.6	1.4	0.2	setosa

1 X = iris.iloc[:,:4] - iris.iloc[:,:4].mean()

Optional (modeling choice!): decide whether or not to standardize. If you want to standardize, divide each observation in a column by that column's standard deviation.

```
1 Z = X / iris.iloc[:,:4].std()
```

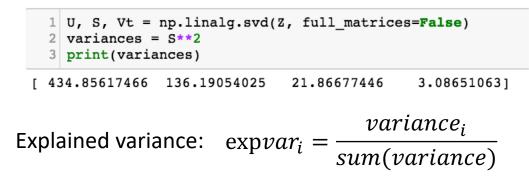
In this new dataset Z each feature has mean zero and standard deviation 1.

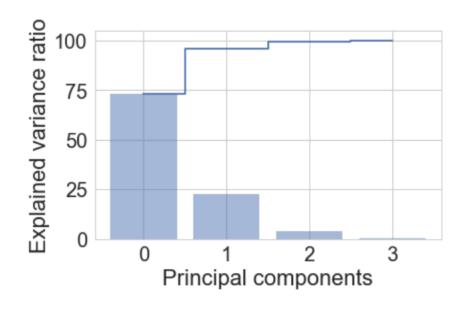
This decision depends on the problem you are solving. If some variables have a large variance and some small, since PCA maximizes the variance, it will weight more the features with large variance. If you want your PCA to be independent of the variance, standardizing the features will do that.

Explained variance

2) Compute SVD: $A = U\Sigma V^T$

3) Principal components: variances = singular values squared

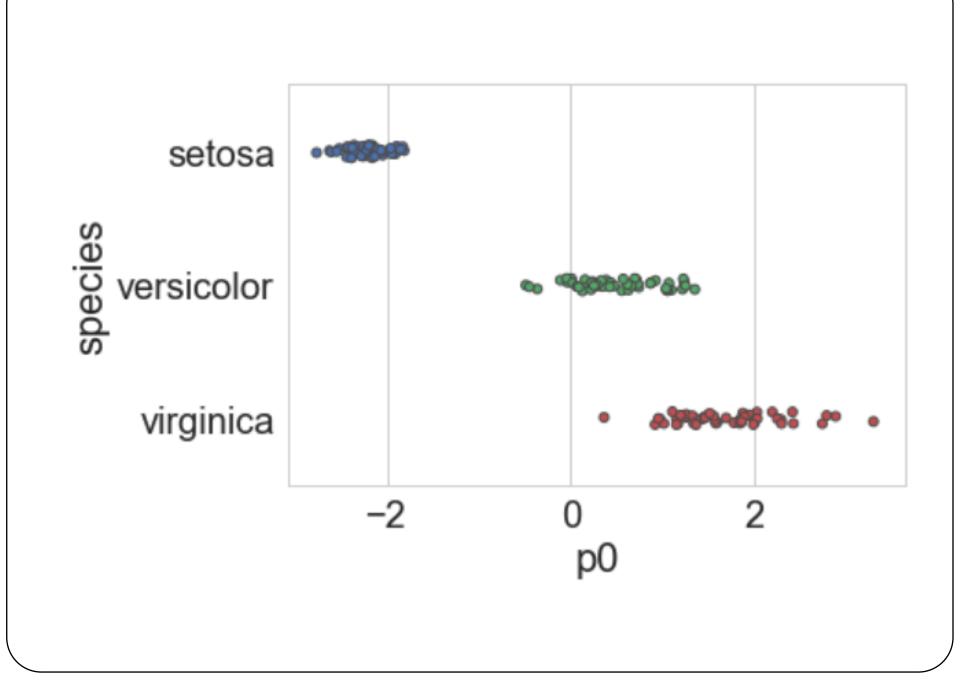


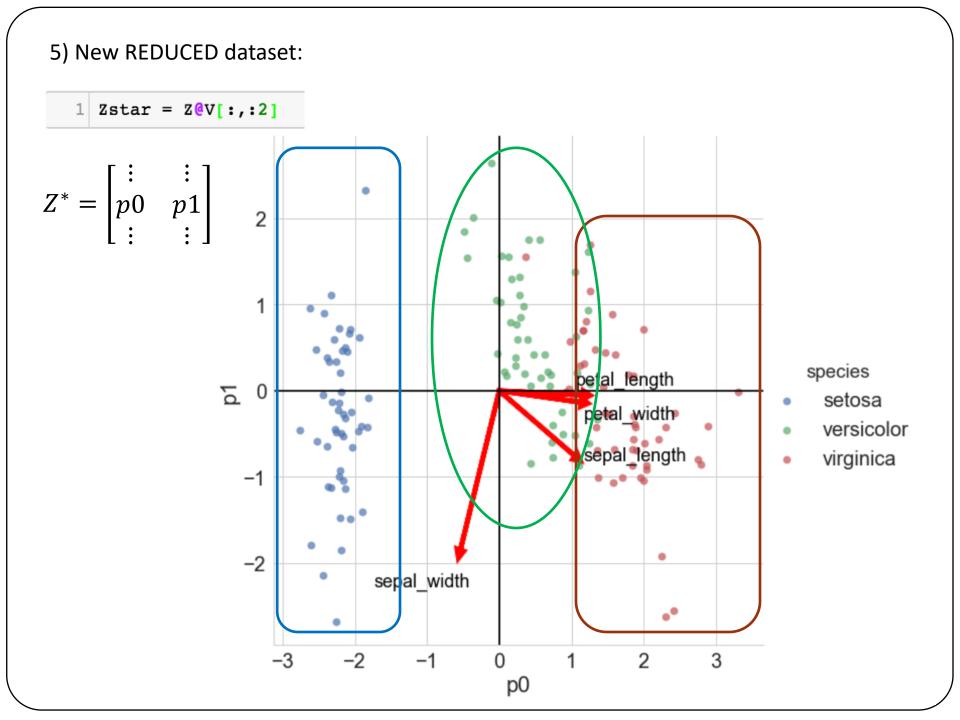


cumulative explained variance
individual explained variance

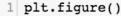
What is the adequate value for k?

Note that the first two principal components account for about 96% of the variance. It makes sense here to make k = 2

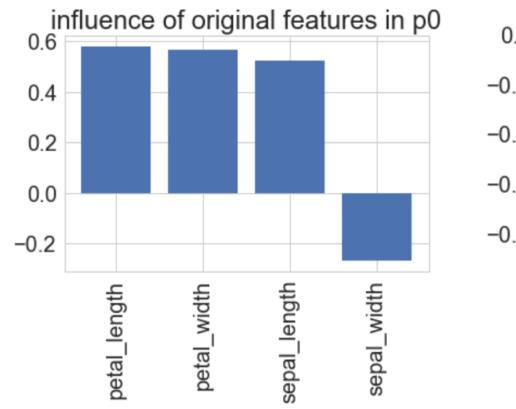




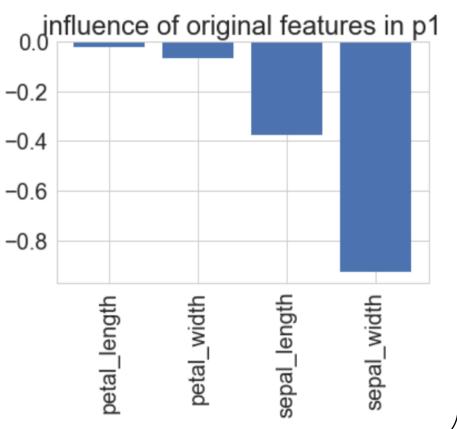
Weight (importance) of each feature in the principal components



- 2 plt.bar(headers[:4],V[:,0])
- 3 plt.xticks(rotation=90)
- 4 plt.title('influence of original features in p0')



- 1 plt.figure()
- 2 plt.bar(headers[:4],V[:,1])
- 3 plt.xticks(rotation=90)
- 4 plt.title('influence of original features in pl')



Let's go back to a dataset with many features!

