
Singular Value Decomposition: many 
other applications



Using SVD to solve square system of 
linear equations
If ! is a "×" square matrix and we want to solve ! $ = &, we can use 
the SVD for ! such that

' ( )*$ = &
( )*$ = '*&

Solve: ( + = '*& (diagonal matrix, easy to solve!)
Evaluate: $ = ) +

Cost of solve: , "-
Cost of decomposition , ". (recall that SVD and LU have the same 
cost asymptotic behavior, however the number of operations - constant 
factor before ". - for the SVD is larger than LU)



Matrix norms and condition number

• The Euclidean norm of an orthogonal matrix is equal to 1

! " = max' ()*
!' " = max' ()*

!' +(!')= max' ()*
'+' = max' ()*

' " = 1

• The Euclidean norm of a matrix is given by the largest singular value

/ " = max' ()*
/' " = max' ()*

! 0 1+' "

Since ! " = 1, 1 " = 1 and 0 is diagonal then

/ " = max 23 = 2*



Matrix norms and condition number
• The Euclidean norm of the inverse of a square-matrix is given by:

!"# $ = max) *+#
(- . /0)"#) $ = max) *+#

/ ."2-0) $

Since - $ = 1, / $ = 1 and . is diagonal then

!"# $= #
4567

(where ! is full rank, so that !"# exists)

• The norm of the pseudo-inverse of a 8 × : matrix is:

!; $= #
4567

where <=>? is the smallest non-zero singular value (for any matrix, 
regardless if it is full rank or rank deficient)

• The condition number of a matrix is given by

@A:B$ ! = 45CD
4567

if ! is full rank or @A:B$ ! = ∞ otherwise



Matrix norms and condition number
• The Euclidean norm of the inverse of a matrix is given by:

!" # = max
( )*+

(- . /0)2+(
#
= max

( )*+
/ ."-0(

#

Since - # = 1, / # = 1 and . is diagonal then

4567 ! = 896(8, 6) → !" #=
+

<=>?

4567 ! < 896(8, 6) → !" #= ∞

• The condition number of a matrix is given by

4567 ! = 896(8, 6) → BC6D# ! =
EFGH
EFIJ

4567 ! < 896(8, 6) → BC6D# ! = ∞



Matrix norms and SVD (more detailed 
derivation)
! " = max' ()*

!' " = max' ()*
!' +(!')

= max' ()*
'+' = max' ()*

' " = 1

/ " = max' ()*
/' " = max' ()*

! 0 1+' " = max' ()*
0 1+' " =

/ = ! 0 1+

= max
1+' ()*

0 1+' " = max2 ()*
0 2 " =3* = max(34)

! " = 1

1 " = 1 0 is diagonal



Condition number and SVD (more 
detailed derivation)

!"#$% & = & % &() %

&() % = max- ./)
(1 2 34)()- % = max- ./)

3(42(61(6- % =

= max- ./)
3 2(614- % = max7 ./)

2(6 7 % =
1

9:;<

What happens when you don’t satisfy the conditions above?

If matrix & is square and non-singular:

!"#$% & = 9:=>
9:;<



Condition number and SVD (cont.)

!"#$% & = & % &( %

&( % = max, -./
0 1(23, % = max4 -./

1( 4 %

!"#$% & = 5678
569:

If ran= & = >?#(>, #)

otherwise

!"#$% & = ∞



Low-Rank Approximation
Another way to write the SVD (assuming for now ! > # for simplicity)

$ =
⋮ … ⋮
() … (*
⋮ … ⋮

+)
⋱

+-
0
⋮
0

… /)0 …
⋮ ⋮ ⋮
… /-0 …

=
⋮ … ⋮
() … (-
⋮ … ⋮

… +) /)0 …
⋮ ⋮ ⋮
… +- /-0 …

= +)()/)0 + +2(2/20 + ⋯+ +-(-/-0

The SVD writes the matrix A as a sum of outer products (of left and right 
singular vectors).



Low-Rank Approximation

What is the rank of !"#"$"%? 

& = !"#"$"% + !)#)$)% + ⋯+ !+#+$+%

What is the rank of !"#"$"% + !)#)$)%? 

One (1 linearly independent column!). 

Two (2 linearly independent columns!)

!" ≥ !) ≥ !- … ≥ 0



Low-Rank Approximation

!" ≥ !$ ≥ !% … ≥ 0

() = !"+","- + !$+$,$- + ⋯+ !)+),)-

Note that:

• ( is full rank if 0123 ( = 2
• Best rank-4 approximation () has 0123(()) = 3
• The error of this approximation can be expressed as:

The best rank-4 approximation for a 7×2 matrix ( is given by:

( − () $ = !):"+):",):"- + !):$+):$,):$- + ⋯+ !;+;,;- $ = !):"



Low-Rank Approximation

!" ≥ !$ ≥ !% … ≥ 0
() = !"+","- + !$+$,$- + ⋯+ !)+),)-

Note that 0123 ( = 2 and 0123(()) = 3 and the norm of the 
difference between the matrix and its approximation is

The best rank-6 approximation for a 7×2 matrix (, (where 
3 ≤ 7:2(7, 2)) is the one that minimizes the following problem:

When using the induced 2-norm, the best rank-6 approximation is given by:



Image compression demo

!""

!""

!""

#$#%

#$#%

#$#%

!""

#$#%

Demo “Image Compression”



Principal Component Analysis



Food consumption in the UK
http://setosa.io/ev/principal-
component-analysis/



How can we focus in just a few of the variables?

We want to reduce the dimension of the feature space, 
Let’s try to reduce to one dimension:

pc1: Principal component 1 - linear combination of the other 17 variables



!"1 = %1 &'"(ℎ('*" +,*-./ + %2 2343,563/ + %3 85,"5/3 935: + …+ %17 =>65,/





How can we focus in just a few of the variables?

What about reducing to two dimensions?



The three variables, Fresh potatoes, 
Alcoholic drinks and Fresh fruit, there is 
a noticeable difference between the 
values for England, Wales and Scotland, 
which are roughly similar, and Northern 
Ireland, which is usually significantly 
higher or lower.





Predicting breast cancer
https://www.kaggle.com/shravank/predicting-
breast-cancer-using-pca-lda-in-r

Goal (MP): Use data about 
tumor cell features to create a 
model to predict if a breast 
tumor is malign or benign.

The data includes 30 
different cell features.

There are many variables 
that are highly 
correlated with each 
other.

Reduce the feature 
space: 

Approach 1: remove 
some of the feature 
variables.



Example: Reduce the feature space by including only 
the features regarding the mean

! =
⋮ ⋮ ⋮
$% … $'(
⋮ ⋮ ⋮

!∗ =
⋮ ⋮ ⋮
$% … $%(
⋮ ⋮ ⋮

PROS: simple and maintain interpretation 
of the feature variables

CONS: lose information from the variables 
that were dropped



Get a new data set, resulting from a linear combination of the original dataset

! =
⋮ ⋮ ⋮
$% … $'(
⋮ ⋮ ⋮

!∗ =
⋮ ⋮ ⋮
$%∗ $*∗ $'∗
⋮ ⋮ ⋮

PROS: less variables containing information of all features

CONS: the new features no longer have a “meaningful” interpretation (here a 
characteristic of a tumor cell)

$%∗ =+
,-%

.
/, $,



Principal component analysis

• PCA will combine the feature variables in a specific way, creating “new variables”. 

• We can now drop the “least important” new variables while still retaining the most 
valuable parts of all of the feature variables!

• As an added benefit, each of the “new variables” after PCA are all independent of 
one another (important requirement for linear models).

• Cons: the new variables don’t have the same meaning as the feature variables (loss 
of interpretability)



Let’s start with a subset of 6 patients, and take a look at only two of the features: 
smoothness and radius



(3.55, 15.24)

Determine the “center” of the dataset – the mean value of each feature



We will shift the dataset such that the “center” of the dataset (mean value) is at the origin 
(0,0) – the new dataset has zero mean value.



We want to find a straight line that fits the dataset. 



Let’s propose the red line below. To quantify how good the fit is, PCA projects the data onto 
the line. The best fit minimizes the distances from the points to the line (indicated in green 
below)…



Or maximizes the distances from the projected points to the origin (indicated in orange)



Why are they the same? 
Take a look at what happens to the vectors below when we change the fit curve.



Let’s talk about the variance of the dataset 

! =

Covariance matrix: #
(%&#) !

(!



! =

Covariance matrix: #
(%&#) !

(!

Diagonalization of covariance 
matrix:

!(! = )*)(

): eigenvectors of !(!
*: eigenvalues of !(!

From SVD: ! = +Σ-(

Maximum variance: 
largest singular value of Σ

Direction of maximum variance:
Corresponding column of -
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pc1

pc2
!" = "". %

!& = '. &

( =
⋮ ⋮
*+ *,
⋮ ⋮

pc1 pc2



!∗ = !$ = %Σ

Transformed dataset:





Let’s add more features! Flower classification

http://sebastianraschka.com/Articles/2015_pca_in_3_steps.html





Principal component analysis

How can we reduce the dimension of a dataset without missing 
important information? 

Detect correlation between variables, if a strong correlation exists, 
then reducing the dimension of the dataset makes sense.

Overall idea: Find the directions of maximum variance in high-
dimensional dataset  (n dimension) and project it onto a subspace 
with smaller dimension (k dimension, with k < n), while retaining 
most of the information.

What is the adequate value for k?

Demo “Features and the SVD”



1) Shift the dataset to zero mean:  ! = ! − !.%&'(( )

2) Compute  SVD:  ! = +Σ-.

3) Principal components: variances = singular values squared

4) Principal directions: columns of -

5) New dataset:  !∗ = ! -

Note how the variances of the new dataset correspond to the singular 
values squared of the original dataset:

(!∗).! = -.!.! - = -.(+Σ-.).+Σ-.- = Σ.Σ

6) In general:

7) But since we want to reduce the dimension of the dataset, we only use 
the first 0 columns of -

!∗ = ! -

% × ( ( × (% × (

!∗ = ! -

% × ( ( × 0% × 0



Iris dataset

1) Shift the dataset to zero mean:

Optional (modeling choice!): decide whether or not to standardize. If you want to 
standardize, divide each observation in a column by that column’s standard deviation.

In this new dataset Z each feature has mean zero and standard deviation 1.

This decision depends on the problem you are solving. If some variables have a large 
variance and some small, since PCA maximizes the variance, it will weight more the 
features with large variance.  If you want your PCA to be independent of the variance, 
standardizing the features will do that. 



Explained variance
2) Compute  SVD:  ! = #Σ%&
3) Principal components: variances = singular values squared

Explained variance: exp*+,- =
*+,.+/01-

234(*+,.+/01)

What is the adequate value for k?

Note that the first two principal components 
account for about 96% of the variance. It makes 
sense here to make 7 = 2





5) New REDUCED dataset:

!∗ =
⋮ ⋮
%0 %1
⋮ ⋮



Weight (importance) of each feature in the 
principal components 



Let’s go back to a dataset with many features!






