Singular Value Decomposition: many other applications

Using SVD to solve square system of linear equations

If \boldsymbol{A} is a $n \times n$ square matrix and we want to solve $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, we can use the SVD for \boldsymbol{A} such that

$$
\begin{gathered}
U \Sigma V^{T} x=b \\
\Sigma V^{T} x=U^{T} b
\end{gathered}
$$

Solve: $\boldsymbol{\Sigma} \boldsymbol{y}=\boldsymbol{U}^{\boldsymbol{T}} \boldsymbol{b}$ (diagonal matrix, easy to solve!)
Evaluate: $\boldsymbol{x}=\boldsymbol{V} \boldsymbol{y}$

Cost of solve: $O\left(n^{2}\right)$
Cost of decomposition $O\left(n^{3}\right)$ (recall that SVD and LU have the same cost asymptotic behavior, however the number of operations - constant factor before n^{3} - for the SVD is larger than LU)

Matrix norms and condition number

- The Euclidean norm of an orthogonal matrix is equal to 1

$$
\|U\|_{2}=\max _{\|x\|_{2}=1}\|\boldsymbol{U}\|_{2}=\max _{\|x\|_{2}=1} \sqrt{(\boldsymbol{U} \boldsymbol{x})^{T}(\boldsymbol{U x})}=\max _{\|x\|_{2}=1} \sqrt{\boldsymbol{x}^{\boldsymbol{T}} \boldsymbol{x}}=\max _{\|x\|_{2}=1}\|x\|_{2}=1
$$

- The Euclidean norm of a matrix is given by the largest singular value

$$
\|\boldsymbol{A}\|_{2}=\max _{\|\boldsymbol{x}\|_{2}=1}\|\boldsymbol{A} \boldsymbol{x}\|_{2}=\max _{\|\boldsymbol{x}\|_{2}=1}\left\|\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\boldsymbol{T}} \boldsymbol{x}\right\|_{2}
$$

Since $\|\boldsymbol{U}\|_{2}=1,\|\boldsymbol{V}\|_{2}=1$ and $\boldsymbol{\Sigma}$ is diagonal then
$\|\boldsymbol{A}\|_{2}=\max \left(\sigma_{i}\right)=\sigma_{1}$

Matrix norms and condition number

- The Euclidean norm of the inverse of a square-matrix is given by:

$$
\left\|\boldsymbol{A}^{-1}\right\|_{2}=\max _{\|x\|_{2}=1}\left\|\left(\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\boldsymbol{T}}\right)^{-1} \boldsymbol{x}\right\|_{2}=\max _{\|\boldsymbol{x}\|_{2}=1}\left\|\boldsymbol{V} \boldsymbol{\Sigma}^{-\mathbf{1}} \boldsymbol{U}^{\boldsymbol{T}} \boldsymbol{x}\right\|_{2}
$$

Since $\|\boldsymbol{U}\|_{2}=1,\|\boldsymbol{V}\|_{2}=1$ and $\boldsymbol{\Sigma}$ is diagonal then

$$
\left\|\boldsymbol{A}^{-1}\right\|_{2}=\frac{1}{\sigma_{\text {min }}} \text { (where } \boldsymbol{A} \text { is full rank, so that } \boldsymbol{A}^{-1} \text { exists) }
$$

- The norm of the pseudo-inverse of a $m \times n$ matrix is:

$$
\begin{array}{r}
\left\|\boldsymbol{A}^{+}\right\|_{2}=\frac{1}{\sigma_{\min }} \text { where } \sigma_{\min } \text { is the smallest non-zero singular value (for any matrix, } \\
\text { regardless if it is full rank or rank deficient) }
\end{array}
$$

- The condition number of a matrix is given by

$$
\operatorname{cond}_{2}(\boldsymbol{A})=\frac{\sigma_{\max }}{\sigma_{\min }} \text { if } \boldsymbol{A} \text { is full rank or } \operatorname{cond}_{2}(\boldsymbol{A})=\infty \text { otherwise }
$$

Matrix norms and condition number

- The Euclidean norm of the inverse of a matrix is given by:
$\left\|\boldsymbol{A}^{+}\right\|_{2}=\max _{\|\boldsymbol{x}\|_{2}=1}\left\|\left(\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\boldsymbol{T}}\right)^{-1} \boldsymbol{x}\right\|_{2}=\max _{\|\boldsymbol{x}\|_{2}=1}\left\|\boldsymbol{V} \boldsymbol{\Sigma}^{+} \boldsymbol{U}^{\boldsymbol{T}} \boldsymbol{x}\right\|_{2}$
Since $\|\boldsymbol{U}\|_{2}=1,\|\boldsymbol{V}\|_{2}=1$ and $\boldsymbol{\Sigma}$ is diagonal then
$\operatorname{rank}(\boldsymbol{A})=\min (m, n) \rightarrow\left\|\boldsymbol{A}^{+}\right\|_{2}=\frac{1}{\sigma_{\min }}$
$\operatorname{rank}(\boldsymbol{A})<\min (m, n) \rightarrow\left\|\boldsymbol{A}^{+}\right\|_{2}=\infty$
- The condition number of a matrix is given by
$\operatorname{rank}(\boldsymbol{A})=\min (m, n) \rightarrow \operatorname{cond}_{2}(\boldsymbol{A})=\frac{\sigma_{\text {max }}}{\sigma_{\text {min }}}$
$\operatorname{rank}(\boldsymbol{A})<\min (m, n) \rightarrow \operatorname{cond}_{2}(\boldsymbol{A})=\infty$

Matrix norms and SVD (more detailed derivation)

$$
\begin{aligned}
&=\max _{\|x\|_{2}=1} \sqrt{\boldsymbol{x}^{T} \boldsymbol{x}}=\max _{\|\boldsymbol{x}\|_{2}=1}\|\boldsymbol{x}\|_{2}=1 \\
&\|\boldsymbol{A}\|_{2}=\max _{\|x\|_{2}=1}\|\boldsymbol{A x}\|_{2}=\max _{\|x\|_{2}=1}\left\|\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T} \boldsymbol{x}\right\|_{2}= \\
&=\max _{\|\boldsymbol{x}\|_{2}=1}^{\|\boldsymbol{U}\|_{2}=1}\left\|\boldsymbol{\Sigma} \boldsymbol{V}^{\boldsymbol{T}} \boldsymbol{x}\right\|_{2}= \\
& \| \boldsymbol{\operatorname { m a x } _ { 2 }}=1
\end{aligned}
$$

Condition number and SVD (more detailed derivation)

If matrix \boldsymbol{A} is square and non-singular:
$\operatorname{cond}_{2}(\boldsymbol{A})=\|\boldsymbol{A}\|_{2}\left\|\boldsymbol{A}^{-1}\right\|_{2}$
$\left\|\boldsymbol{A}^{-1}\right\|_{2}=\max _{\|\boldsymbol{x}\|_{2}=1}\left\|\left(\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\boldsymbol{T}}\right)^{-1} \boldsymbol{x}\right\|_{2}=\max _{\|\boldsymbol{x}\|_{2}=1}\left\|\boldsymbol{V}^{\boldsymbol{-}} \boldsymbol{\Sigma}^{\boldsymbol{- 1}} \boldsymbol{U}^{\boldsymbol{- 1}} \boldsymbol{x}\right\|_{2}=$
$=\max _{\|\boldsymbol{x}\|_{2}=1}\left\|\boldsymbol{V} \boldsymbol{\Sigma}^{-\mathbf{1}} \boldsymbol{U}^{\boldsymbol{T}} \boldsymbol{x}\right\|_{2}=\max _{\|\boldsymbol{y}\|_{2}=1}\left\|\boldsymbol{\Sigma}^{\mathbf{- 1}} \boldsymbol{y}\right\|_{2}=\frac{1}{\sigma_{\text {min }}}$
$\operatorname{cond}_{2}(\boldsymbol{A})=\frac{\sigma_{\text {max }}}{\sigma_{\text {min }}}$
What happens when you don't satisfy the conditions above?

Condition number and SVD (cont.)

$\operatorname{cond}_{2}(\boldsymbol{A})=\|\boldsymbol{A}\|_{2}\left\|\boldsymbol{A}^{+}\right\|_{2}$

$$
\left\|\boldsymbol{A}^{+}\right\|_{2}=\max _{\|\boldsymbol{x}\|_{2}=1}\left\|\boldsymbol{V} \boldsymbol{\Sigma}^{+} \boldsymbol{U}^{\boldsymbol{T}} \boldsymbol{x}\right\|_{2}=\max _{\|\boldsymbol{y}\|_{2}=1}\left\|\boldsymbol{\Sigma}^{+} \boldsymbol{y}\right\|_{2}
$$

If $\operatorname{ran} \boldsymbol{k}(\boldsymbol{A})=\min (m, n)$

$$
\operatorname{cond}_{2}(\boldsymbol{A})=\frac{\sigma_{\max }}{\sigma_{\min }}
$$

otherwise

$$
\operatorname{cond}_{2}(\boldsymbol{A})=\infty
$$

Low-Rank Approximation

Another way to write the SVD (assuming for now $m>n$ for simplicity)

$$
\begin{aligned}
& \boldsymbol{A}=\left(\begin{array}{ccc}
\vdots & \ldots & \vdots \\
\boldsymbol{u}_{1} & . & \boldsymbol{u}_{m} \\
\vdots & . . & \vdots
\end{array}\right)\left(\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{n} \\
& & 0 \\
& & \vdots \\
& & 0
\end{array}\right)\left(\begin{array}{ccc}
\ldots & \mathbf{v}_{1}^{T} & \ldots \\
\vdots & \vdots & \vdots \\
\ldots & \mathbf{v}_{n}^{T} & \ldots
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\vdots & \ldots & \vdots \\
\boldsymbol{u}_{1} & \ldots & \boldsymbol{u}_{n} \\
\vdots & \ldots & \vdots
\end{array}\right)\left(\begin{array}{ccc}
\ldots & \sigma_{1} \mathbf{v}_{1}^{T} & \ldots \\
\vdots & \vdots & \vdots \\
\ldots & \sigma_{n} \mathbf{v}_{n}^{T} & \ldots
\end{array}\right) \\
& =\sigma_{1} \boldsymbol{u}_{1} \mathbf{v}_{1}^{T}+\sigma_{2} \boldsymbol{u}_{2} \mathbf{v}_{2}^{T}+\cdots+\sigma_{n} \boldsymbol{u}_{n} \mathbf{v}_{n}^{T}
\end{aligned}
$$

The SVD writes the matrix A as a sum of outer products (of left and right singular vectors).

Low-Rank Approximation

$\boldsymbol{A}=\sigma_{1} \boldsymbol{u}_{1} \mathbf{v}_{1}^{T}+\sigma_{2} \boldsymbol{u}_{2} \mathbf{v}_{2}^{T}+\cdots+\sigma_{n} \boldsymbol{u}_{n} \mathbf{v}_{n}^{T} \quad \sigma_{1} \geq \sigma_{2} \geq \sigma_{3} \ldots \geq 0$

What is the rank of $\sigma_{1} \boldsymbol{u}_{1} \mathbf{v}_{1}^{T}$?

One (1 linearly independent column!).

What is the rank of $\sigma_{1} \boldsymbol{u}_{1} \mathbf{v}_{1}^{T}+\sigma_{2} \boldsymbol{u}_{2} \mathbf{v}_{2}^{T}$?

Two (2 linearly independent columns!)

Low-Rank Approximation

The best rank- \boldsymbol{k} approximation for a $m \times n$ matrix \boldsymbol{A} is given by:

$$
\begin{gathered}
\boldsymbol{A}_{k}=\sigma_{1} \boldsymbol{u}_{1} \mathbf{v}_{1}^{T}+\sigma_{2} \boldsymbol{u}_{2} \mathbf{v}_{2}^{T}+\cdots+\sigma_{k} \boldsymbol{u}_{k} \mathbf{v}_{k}^{T} \\
\sigma_{1} \geq \sigma_{2} \geq \sigma_{3} \ldots \geq 0
\end{gathered}
$$

Note that:

- \boldsymbol{A} is full rank if $\operatorname{rank}(\boldsymbol{A})=n$
- Best rank- \boldsymbol{k} approximation $\boldsymbol{A}_{\boldsymbol{k}}$ has $\operatorname{rank}\left(\boldsymbol{A}_{\boldsymbol{k}}\right)=k$
- The error of this approximation can be expressed as:
$\left\|\boldsymbol{A}-\boldsymbol{A}_{k}\right\|_{2}=\left\|\sigma_{k+1} \boldsymbol{u}_{k+1} \mathbf{v}_{k+1}^{T}+\sigma_{k+2} \boldsymbol{u}_{k+2} \mathbf{v}_{k+2}^{T}+\cdots+\sigma_{n} \boldsymbol{u}_{n} \mathbf{v}_{n}^{T}\right\|_{2}=\sigma_{k+1}$

Low-Rank Approximation

The best rank- \boldsymbol{k} approximation for a $m \times n$ matrix \boldsymbol{A}, (where $k \leq \min (m, n)$) is the one that minimizes the following problem:

$$
\begin{aligned}
& \min _{A_{k}}\left\|A-A_{k}\right\| \\
& \text { such that } \quad \operatorname{rank}\left(A_{k}\right) \leq k .
\end{aligned}
$$

When using the induced 2-norm, the best rank- \boldsymbol{k} approximation is given by:

$$
\begin{gathered}
\boldsymbol{A}_{k}=\sigma_{1} \boldsymbol{u}_{1} \mathbf{v}_{1}^{T}+\sigma_{2} \boldsymbol{u}_{2} \mathbf{v}_{2}^{T}+\cdots+\sigma_{k} \boldsymbol{u}_{k} \mathbf{v}_{k}^{T} \\
\sigma_{1} \geq \sigma_{2} \geq \sigma_{3} \cdots \geq 0
\end{gathered}
$$

Note that $\operatorname{rank}(\boldsymbol{A})=n$ and $\operatorname{rank}\left(\boldsymbol{A}_{k}\right)=k$ and the norm of the difference between the matrix and its approximation is

$$
\left\|A-A_{k}\right\|_{2}=\left\|\sum_{i=k+1}^{n} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{\top}\right\|_{2}=\sigma_{k+1}
$$

Image compression demo

Principal Component Analysis

Food consumption in the UK

http: / / setosa.io/ev/principal-component-analysis/

Alcoholic drinks
Beverages
Carcase meat
Cereals
Cheese
Confectionery
Fats and oils
Fish
Fresh fruit
Fresh potatoes
Fresh Veg
Other meat
Other Veg
Processed potatoes
Processed Veg
Soft drinks
Sugars

How can we focus in just a few of the variables?

We want to reduce the dimension of the feature space, Let's try to reduce to one dimension:

pc1: Principal component 1 - linear combination of the other 17 variables
$p c 1=x 1$ Alcoholic Drinks $+x 2$ Beverages $+x 3$ Carcase meat $+\ldots+x 17$ Sugars influence of original variables(food) upon pc1

influence of original variables(food) upon pc1

How can we focus in just a few of the variables?

What about reducing to two dimensions?

influence of original variables(food) upon pc1

influence of original variables(food) upon pc2

The three variables, Fresh potatoes, Alcoholic drinks and Fresh fruit, there is a noticeable difference between the values for England, Wales and Scotland, which are roughly similar, and Northern Ireland, which is usually significantly higher or lower.

	England	N Ireland	Scotland	Wales
Alcoholic drinks	375	135	458	475
Beverages	57	47	53	73
Carcase meat	245	267	242	227
Cereals	1472	1494	1462	1582
Cheese	105	66	103	103
Confectionery	54	41	62	64
Fats and oils	193	209	184	235
Fish	147	93	122	160
Fresh fruit	1102	674	957	1137
Fresh potatoes	720	1033	566	874
Fresh Veg	253	143	171	265
Other meat	685	586	750	803
Other Veg	488	355	418	570
Processed potatoes	198	187	220	203
Processed Veg	360	334	337	365
Soft drinks	1374	1506	1572	1256
Sugars	156	139	147	175

Ireland

Dublin Θ

- Manchester

Nottingham
England

Predicting breast cancer

Goal (MP): Use data about tumor cell features to create a model to predict if a breast tumor is malign or benign.

The data includes 30 different cell features.

There are many variables that are highly correlated with each other.

Reduce the feature space:

Approach 1: remove some of the feature variables.

Example: Reduce the feature space by including only

Get a new data set, resulting from a linear combination of the original dataset

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
\vdots & \vdots & \vdots \\
F_{1} & \ldots & F_{30} \\
\vdots & \vdots & \vdots
\end{array}\right] \\
\\
A^{*}=\left[\begin{array}{ccc}
\vdots & \vdots & \vdots \\
F_{1}^{*} & F_{2}^{*} & F_{3}^{*} \\
\vdots & \vdots & \vdots
\end{array}\right] \\
F_{1}^{*}=\sum_{i=1}^{n} a_{i} F_{i}
\end{gathered}
$$

PROS: less variables containing information of all features
CONS: the new features no longer have a "meaningful" interpretation (here a characteristic of a tumor cell)

Principal component analysis

- PCA will combine the feature variables in a specific way, creating "new variables".
- We can now drop the "least important" new variables while still retaining the most valuable parts of all of the feature variables!
- As an added benefit, each of the "new variables" after PCA are all independent of one another (important requirement for linear models).
- Cons: the new variables don't have the same meaning as the feature variables (loss of interpretability)

Let's start with a subset of 6 patients, and take a look at only two of the features: smoothness and radius

Determine the "center" of the dataset - the mean value of each feature

We will shift the dataset such that the "center" of the dataset (mean value) is at the origin $(0,0)$ - the new dataset has zero mean value.

We want to find a straight line that fits the dataset.

Let's propose the red line below. To quantify how good the fit is, PCA projects the data onto the line. The best fit minimizes the distances from the points to the line (indicated in green below)...

Or maximizes the distances from the projected points to the origin (indicated in orange)

Why are they the same?
Take a look at what happens to the vectors below when we change the fit curve.

Let's talk about the variance of the dataset

Let's add more features! Flower classification

http: / /sebastianraschka.com/Articles/2015_pca_in_3_steps.html

Principal component analysis

How can we reduce the dimension of a dataset without missing important information?

Detect correlation between variables, if a strong correlation exists, then reducing the dimension of the dataset makes sense.

Overall idea: Find the directions of maximum variance in highdimensional dataset (n dimension) and project it onto a subspace with smaller dimension (k dimension, with $\mathrm{k}<\mathrm{n}$), while retaining most of the information.

What is the adequate value for k ?

1) Shift the dataset to zero mean: $A=A-A$. mean()
2) Compute SVD: $A=U \Sigma V^{T}$
3) Principal components: variances $=$ singular values squared
4) Principal directions: columns of V
5) New dataset: $A^{*}=A V$

Note how the variances of the new dataset correspond to the singular values squared of the original dataset:

$$
\left(A^{*}\right)^{T} A=V^{T} A^{T} A V=V^{T}\left(U \Sigma V^{T}\right)^{T} U \Sigma V^{T} V=\Sigma^{T} \Sigma
$$

6) In general:

$$
m \times n \quad m \times n
$$

7) But since we want to reduce the dimension of the dataset, we only use the first k columns of V

Iris dataset

1) Shift the dataset to zero mean:
sepal_length sepal_width petal_length petal_width species

	sepal_length	sepal_width	petal_length	petal_width	species
$\mathbf{0}$	5.1	3.5	1.4	0.2	setosa
$\mathbf{1}$	4.9	3.0	1.4	0.2	setosa
$\mathbf{2}$	4.7	3.2	1.3	0.2	setosa
$\mathbf{3}$	4.6	3.1	1.5	0.2	setosa
$\mathbf{4}$	5.0	3.6	1.4	0.2	setosa

```
1 X = iris.iloc[:,:4] - iris.iloc[:,:4].mean()
```

Optional (modeling choice!): decide whether or not to standardize. If you want to standardize, divide each observation in a column by that column's standard deviation.

```
1 Z = X / iris.iloc[:,:4].std()
```

In this new dataset Z each feature has mean zero and standard deviation 1.

This decision depends on the problem you are solving. If some variables have a large variance and some small, since PCA maximizes the variance, it will weight more the features with large variance. If you want your PCA to be independent of the variance, standardizing the features will do that.

Explained variance

2) Compute SVD: $A=U \Sigma V^{T}$
3) Principal components: variances $=$ singular values squared

- cumulative explained variance individual explained variance

What is the adequate value for k ?

Note that the first two principal components account for about 96% of the variance. It makes sense here to make $k=2$

5) New REDUCED dataset:

1 Zstar $=\mathrm{Z@V}[:,: 2]$
$Z^{*}=\left[\begin{array}{cc}\vdots & \vdots \\ p 0 & p 1 \\ \vdots & \vdots\end{array}\right]$

Weight (importance) of each feature in the principal components

```
plt.figure()
plt.bar(headers[:4],V[:,0])
plt.xticks(rotation=90)
plt.title('influence of original features in p0')
```

```
plt.figure()
plt.bar(headers[:4],V[:,1])
plt.xticks(rotation=90)
4 \text { plt.title('influence of original features in pl')}
```

influence of original features in p0

Let's go back to a dataset with many features!

area（mean）
area（stderr）
area（worst）
 （иеәш）Ки！ィеэиоэ

 （¡s．om）uo！̣suәш！！ perimeter（mean）
 （uеәш）sn！pe」 （нәрłs）sn！pe」 （иеәш）ssəuчłoous
（łs．ом）sn！̣pe」

 （is．om）ssəuyloous （иеәш）Кদәшшкs （нәрңs）Кদәшшイs （дsıoм）КдәшшКs （иеәш）әıпұхә | 0 |
| :---: |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 | texture（worst）

