Rounding errors

Example

Show demo: "Waiting for 1 ".
Determine the double-precision machine representation for 0.1
$0.1=(0.000110011 \overline{0011} \ldots)_{2}=(1.100110011 \ldots)_{2} \times 2^{-4}$

Machine floating point number

- Not all real numbers can be exactly represented as a machine floating-point number.
- Consider a real number in the normalized floating-point form:

$$
x= \pm 1 . b_{1} b_{2} b_{3} \ldots b_{n} \ldots \times 2^{m}
$$

- The real number x will be approximated by either x_{-}or x_{+}, the nearest two machine floating point numbers.

Exact number: $x=1 . b_{1} b_{2} b_{3} \ldots b_{n} \ldots \times 2^{m}$

$$
\begin{aligned}
& x_{-}=1 . b_{1} b_{2} b_{3} \ldots b_{n} \times 2^{m} \\
& x_{+}=1 . b_{1} b_{2} b_{3} \ldots b_{n} \times 2^{m}+\underbrace{0.000 \ldots 01}_{\epsilon_{m}} \times 2^{m}
\end{aligned}
$$

Gap between x_{+}and $x_{-}:\left|x_{+}-x_{-}\right|=\epsilon_{m} \times 2^{m}$

Examples for single precision:
x_{+}and x_{-}of the form $q \times 2^{-10}$
x_{+}and x_{-}of the form $q \times 2^{4}$:
x_{+}and x_{-}of the form $q \times 2^{20}$:
x_{+}and x_{-}of the form $q \times 2^{60}$:
The interval between successive floating point numbers is not uniform: the interval is smaller as the magnitude of the numbers themselves is smaller, and it is bigger as the numbers get bigger.

Gap between two successive machine floating point numbers

A "toy" number system can be represented as $x= \pm 1 . b_{1} b_{2} \times 2^{m}$ for $m \in[-4,4]$ and $b_{i} \in\{0,1\}$.
$(1.00)_{2} \times 2^{0}=1$
$(1.00)_{2} \times 2^{1}=2$
$(1.00)_{2} \times 2^{2}=4.0$
$(1.01)_{2} \times 2^{0}=1.25$
$(1.01)_{2} \times 2^{1}=2.5$
$(1.01)_{2} \times 2^{2}=5.0$
$(1.10)_{2} \times 2^{0}=1.5$
$(1.10)_{2} \times 2^{1}=3.0$
$(1.10)_{2} \times 2^{2}=6.0$
$(1.11)_{2} \times 2^{0}=1.75$
$(1.11)_{2} \times 2^{1}=3.5$
$(1.11)_{2} \times 2^{2}=7.0$

$(1.00)_{2} \times 2^{3}=8.0$	$(1.00)_{2} \times 2^{4}=16.0$	$(1.00)_{2} \times 2^{-1}=0.5$
$(1.01)_{2} \times 2^{3}=10.0$	$(1.01)_{2} \times 2^{4}=20.0$	$(1.01)_{2} \times 2^{-1}=0.625$
$(1.10)_{2} \times 2^{3}=12.0$	$(1.10)_{2} \times 2^{4}=24.0$	$(1.10)_{2} \times 2^{-1}=0.75$
$(1.11)_{2} \times 2^{3}=14.0$	$(1.11)_{2} \times 2^{4}=28.0$	$(1.11)_{2} \times 2^{-1}=0.875$

$(1.00)_{2} \times 2^{-2}=0.25$
$(1.01)_{2} \times 2^{-2}=0.3125$
$(1.00)_{2} \times 2^{-3}=0.125$
$(1.00)_{2} \times 2^{-4}=0.0625$
$(1.10)_{2} \times 2^{-2}=0.375$
$(1.01)_{2} \times 2^{-3}=0.15625$
$(1.01)_{2} \times 2^{-4}=0.078125$
$(1.11)_{2} \times 2^{-2}=0.4375$
$(1.10)_{2} \times 2^{-3}=0.1875$
$(1.10)_{2} \times 2^{-4}=0.09375$
$(1.11)_{2} \times 2^{-2}=0.4375 \quad(1.11)_{2} \times 2^{-3}=0.21875 \quad(1.11)_{2} \times 2^{-4}=0.109375$

Rounding

The process of replacing x by a nearby machine number is called rounding, and the error involved is called roundoff error.

Round by chopping:

	x is positive number	x is negative number
Round up (ceil)		
Round down (floor)		

Round to nearest:

Rounding (roundoff) errors

Consider rounding by chopping:

- Absolute error:
- Relative error:

Rounding (roundoff) errors

$$
\begin{aligned}
& x_{-} \quad x=1 . b_{1} b_{2} b_{3} \ldots b_{n} \ldots \times 2^{m} \\
& \frac{|\tilde{x}-x|}{|x|} \leq 2^{-23} \approx 1.2 \times 10^{-7} \quad \frac{|\tilde{x}-x|}{|x|} \leq 2^{-52} \approx 2.2 \times 10^{-16}
\end{aligned}
$$

Single precision: Floating-point math consistently introduces relative errors of about 10^{-7}. Hence, single precision gives you about 7
(decimal) accurate digits.

Double precision: Floating-point math consistently introduces relative errors of about 10^{-16}. Hence, double precision gives you about 16 (decimal) accurate digits.

Iclicker question

Assume you are working with IEEE single-precision numbers. Find the smallest number a that satisfies

$$
2^{8}+a \neq 2^{8}
$$

A) 2^{-1074}
B) 2^{-1022}
C) 2^{-52}
D) 2^{-15}
E) 2^{-8}

Demo

Floating point arithmetic

Consider a number system such that $x= \pm 1 . b_{1} b_{2} b_{3} \times 2^{m}$ for $m \in[-4,4]$ and $b_{i} \in\{0,1\}$.

Rough algorithm for addition and subtraction:

1. Bring both numbers onto a common exponent
2. Do "grade-school" operation
3. Round result

- Example 1: No rounding needed

$$
\begin{aligned}
& a=(1.101)_{2} \times 2^{1} \\
& b=(1.001)_{2} \times 2^{1}
\end{aligned}
$$

Floating point arithmetic

Consider a number system such that $x= \pm 1 . b_{1} b_{2} b_{3} \times 2^{m}$ for $m \in[-4,4]$ and $b_{i} \in\{0,1\}$.

- Example 2: Require rounding

$$
\begin{aligned}
& a=(1.101)_{2} \times 2^{0} \\
& b=(1.000)_{2} \times 2^{0}
\end{aligned}
$$

- Example 3:

$$
\begin{gathered}
a=(1.100)_{2} \times 2^{1} \\
b=(1.100)_{2} \times 2^{-1}
\end{gathered}
$$

Mathematical properties of FP operations

Not necessarily associative:
For some x, y, z the result below is possible:

$$
(x+y)+z \neq x+(y+z)
$$

Not necessarily distributive:
For some x, y, z the result below is possible:

$$
z(x+y) \neq z x+z y
$$

Not necessarily cumulative:
Repeatedly adding a very small number to a large number may do nothing

Demo: FP-arithmetic

Floating point arithmetic

Consider a number system such that $x= \pm 1 . b_{1} b_{2} b_{3} b_{4} \times 2^{m}$ for $m \in[-4,4]$ and $b_{i} \in\{0,1\}$.

- Example 4:

$$
\begin{aligned}
& a=(1.1011)_{2} \times 2^{1} \\
& b=(1.1010)_{2} \times 2^{1}
\end{aligned}
$$

Cancellation

$a=1 . a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} \ldots a_{n} \ldots \times 2^{m 1}$
$b=1 . b_{1} b_{2} b_{3} b_{4} b_{5} b_{6} \ldots b_{n} \ldots \times 2^{m 2}$

Suppose $a \approx b$ and single precision (without loss of generality)
$a=1 . a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} \ldots a_{20} a_{21} 10 a_{24} a_{25} a_{26} a_{27} \ldots \times 2^{m}$
$b=1 . a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} \ldots a_{20} a_{21} 11 b_{24} b_{25} b_{26} b_{27} \ldots \times 2^{m}$

Example of cancellation:

Cancellation

$a=1 . a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} \ldots a_{n} \ldots \times 2^{m 1}$
$b=1 . b_{1} b_{2} b_{3} b_{4} b_{5} b_{6} \ldots b_{n} \ldots \times 2^{m 2}$

For example, assume single precision and $m 1=m 2+18$ (without loss of generality), i.e. $a \gg b$
$f l(a)=1 . a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} \ldots a_{22} a_{23} \times 2^{m+18}$
$f l(b)=1 . b_{1} b_{2} b_{3} b_{4} b_{5} b_{6} \ldots b_{22} b_{23} \times 2^{m}$

1. $a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} \ldots a_{22} a_{23} \times 2^{m+18}$
$+0.0000 \ldots 001 b_{1} b_{2} b_{3} b_{4} b_{5} \times 2^{m+18}$
In this example, the result $f l(a+b)$ only included 6 bits of precision from $f l(b)$. Lost precision!

Loss of Significance

How can we avoid this loss of significance? For example, consider the function $f(x)=\sqrt{x^{2}+1}-1$

If we want to evaluate the function for values x near zero, there is a potential loss of significance in the subtraction.

Loss of Significance

Re-write the function as $f(x)=\frac{x^{2}}{\sqrt{x^{2}+1}-1}$ (no subtraction!)

Example:

If $x=0.3721448693$ and $y=0.3720214371$ what is the relative error in the computation of $(x-y)$ in a computer with five decimal digits of accuracy?

