Convergence plots and Big-0 notation

Let's first talk about plots...

- Power functions:

$$
y=a x^{b}
$$

$$
\log y=\log \left(a x^{b}\right)=\log (a)+\log \left(x^{b}\right)=\log (a)+b \log (x)
$$

$$
\bar{y}=\bar{a}+b \bar{x}
$$

Let's first talk about plots...

- Exponential functions:

$$
y=a b^{x}
$$

$$
\log y=\log \left(a b^{x}\right)=\log (a)+\log \left(b^{x}\right)=\log (a)+\mathrm{x} \log (b)
$$

$$
\bar{y}=\bar{a}+\bar{b} x
$$

Let's first talk about plots...

- Log functions:

$$
\begin{aligned}
& y=a \log (b x) \\
& y=a \log (b)+a \log (x) \\
& y=\bar{b}+a \bar{x}
\end{aligned}
$$

Matrix-matrix multiplication example

For a matrix with dimensions $n \times n$, the computational complexity can be represented by a power function:

$$
\text { time }=c n^{a}
$$

We could count the total number of operations to determine the value of the constants above, but instead, we will get an estimate using a numerical experiment where we perform several matrix-matrix multiplications for vary matrix sizes, and store the time to take to perform the operation.

For a matrix with dimensions $n \times n$, the computational complexity can be represented by a power function:

$$
\text { time }=c n^{a}
$$

What type of plot will result in a straight line?
A) semilog-x
B) semilog-y
C) $\log -\log$

Power functions are represented by straight lines in a log-log plot, where the coefficient a is determined by the slope of the line.

Asymptotic Behavior; ("Big O") $O(\cdot)$ Notation

How do we say something exact without having to predict individual values exactly?

Let $g(n)$ be our model function.

Then instead of writing $\tau(n) \approx C \cdot g(n)$

We write $\tau(n)=O(g(n))$

In other words, there is a constant C so that

$$
\tau(n) \leq C \cdot g(n)
$$

Instead of predicting time using time $=c n^{a}$, we can use the big-O notation to write

$$
\text { time }=O\left(n^{a}\right)
$$

where a can be obtained from the slope of the straight line. For a matrix-matrix multiplication, what is the value of a ?

Demo: Cost of Matrix-Matrix Multiplication

Revising Big-Oh notation

Let f and g be two functions. Then

$$
f(x)=O(g(x)) \text { as } x \rightarrow \infty
$$

If an only if there is a positive constant M such that for all sufficiently large values of x, the absolute value of $f(x)$ is at most multiplied by the absolute value of $g(x)$. In other words, there exists a value M and some x_{0} such that:

$$
|f(x)| \leq M|g(x)| \quad \forall x \geq x_{0}
$$

Example:

Consider the function $f(x)=2 x^{2}+27 x+1000$

When $x \rightarrow \infty$, the term x^{2} is the most significant, and hence,

$$
f(x)=O\left(x^{2}\right)
$$

Revising Big-Oh notation

Let f and g be two functions. Then

$$
f(x)=O(g(x)) \text { as } x \rightarrow a
$$

If an only if there exists a value M and some δ such that:

$$
|f(x)| \leq M|g(x)| \quad \forall x \text { where } 0<|x-a|<\delta
$$

Same example...

Consider the function $f(x)=2 x^{2}+27 x+1000$

When $x \rightarrow 0$, the constant 1000 is the dominant part of the function. Hence,

$$
f(x)=O(1)
$$

Iclicker question

Suppose that the truncation error of a numerical method is given by the following function:

$$
E(h)=5 h^{2}+3 h
$$

Which of the following functions are Oh-estimates of $E(h)$ as $h \rightarrow 0$

1) $O\left(5 h^{2}\right)$
2) $O(h)$
3) $O\left(5 h^{2}+3 h\right)$
4) $O\left(h^{2}\right)$

Mark the correct answer:
A) 1 and 2
B) 2 and 3
C) 2 and 4
D) 3 and 4
E) NOTA

Iclicker question

Suppose that the complexity of a numerical method is given by the following function:

$$
c(n)=5 n^{2}+3 n
$$

Which of the following functions are Oh-estimates of $c(n)$ as $n \rightarrow \infty$

1) $\mathrm{O}\left(5 n^{2}+3 n\right) \quad$ Mark the correct
2) $O\left(n^{2}\right)$
answer:
3) $O\left(n^{3}\right)$
A) $1,2,3$
4) $\mathrm{O}(n)$
B) $1,2,3,4$
C) 4
D) 3
E) NOTA

Select the function that best represents the decay of the error as n increases

A) $e^{-2 n}$
B) e^{-n}
C) n^{-1}
D) n^{-2}

A) $e^{-2 n}$
B) e^{-n}
C) n^{-1}
D) n^{-2}

Rates of convergence

1) Algebraic convergence: error $\sim \frac{1}{n^{\alpha}}$ or $O\left(\frac{1}{n^{\alpha}}\right)$ Algebraic growth: time $\sim n^{\alpha}$ or $O\left(n^{\alpha}\right)$
α : Algebraic index of convergence
A sequence that grows or converges algebraically is a straight line in a log-log plot.

Demo "Exponential, Algebraic and Geometric convergence"

Rates of convergence

2) Exponential convergence: error $\sim e^{-\alpha n}$ or $O\left(e^{-\alpha n}\right)$

Exponential growth: time $\sim e^{\alpha n}$ or $O\left(e^{\alpha n}\right)$

A sequence that grows or converges exponentially is a straight line in a linearlog plot.

Rates of convergence

Exponential growth/convergence is much faster than algebraic growth/convergence.

