Truncation errors: using Taylor series to approximate functions

Approximating functions using polynomials:

Let's say we want to approximate a function $f(x)$ with a polynomial

$$
f(x)=a_{o}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+\cdots
$$

For simplicity, assume we know the function value and its derivatives at $x_{o}=0$ (we will later generalize this for any point). Hence,

$$
\begin{aligned}
& f^{\prime}(x)=a_{1}+2 a_{2} x+3 a_{3} x^{2}+4 a_{4} x^{3}+\cdots \\
& f^{\prime \prime}(x)=2 a_{2}+(3 \times 2) a_{3} x+(4 \times 3) a_{4} x^{2}+\cdots \\
& f^{\prime \prime \prime}(x)=(3 \times 2) a_{3}+(4 \times 3 \times 2) a_{4} x+\cdots \\
& f^{\prime v}(x)=(4 \times 3 \times 2) a_{4}+\cdots \\
& \begin{array}{ll}
f(0)=a_{o} & f^{\prime \prime}(0)=2 a_{2} \\
f^{\prime}(0)=a_{1} & f^{\prime \prime \prime}(0)=(3 \times 2) a_{3}
\end{array}
\end{aligned}
$$

Taylor Series

Taylor Series approximation about point $x_{o}=0$

$$
\begin{aligned}
& f(x)=a_{o}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+\cdots \\
& f(x)=\sum_{i=0}^{\infty} a_{i} x^{i}
\end{aligned}
$$

Taylor Series

In a more general form, the Taylor Series approximation about point x_{o} is given by:
$f(x)=f\left(x_{o}\right)+f^{\prime}\left(x_{o}\right)\left(x-x_{o}\right)+\frac{f^{\prime \prime}\left(x_{o}\right)}{2!}\left(x-x_{o}\right)^{2}+\frac{f^{\prime \prime \prime}(0)}{3!}\left(x-x_{o}\right)^{3}+\cdots$
$f(x)=\sum_{i=0}^{\infty} \frac{f^{(i)}\left(x_{o}\right)}{i!}\left(x-x_{o}\right)^{i}$

Example:

Assume a finite Taylor series approximation that converges everywhere for a given function $f(x)$ and you are given the following information:

$$
f(1)=2 ; f^{\prime}(1)=-3 ; f^{\prime \prime}(1)=4 ; f^{(n)}(1)=0 \forall n \geq 3
$$

Evaluate $f(4)$

Taylor Series

We cannot sum infinite number of terms, and therefore we have to truncate.

How big is the error caused by truncation? Let's write $h=x-x_{o}$

Taylor series with remainder

Let f be $(n+1)$-times differentiable on the interval $\left(x_{o}, x\right)$ with $f^{(n)}$ continuous on $\left[x_{o}, x\right]$, and $h=x-x_{o}$
error $=$ exact - approximation

Graphical representation:

Example:

Given the function

$$
f(x)=\frac{1}{(20 x-10)}
$$

Write the Taylor approximation of degree 2 about point $x_{o}=0$

Example:

Given the function

$$
f(x)=\sqrt{-x^{2}+1}
$$

Write the Taylor approximation of degree 2 about point $x_{o}=0$

$$
f(x)=\sqrt{-x^{2}+1}
$$

Example:

Error Order for Taylor series

The series expansion for e^{x} about 2 is

$$
\exp (2) \cdot\left(1+(x-2)+\frac{(x-2)^{2}}{2!}+\frac{(x-2)^{3}}{3!}+\ldots\right)
$$

If we evaluate e^{x} using only the first four terms of this expansion (i.e. only terms up to and including $\frac{(x-2)^{3}}{3!}$), then what is the error in big-O notation?

Choice*

A) $O\left(x^{4}\right)$
B) $O\left(x^{5}\right)$
C) $O\left(x^{3}\right)$
D) $O\left((x-2)^{3}\right)$
E) $O\left((x-2)^{4}\right)$

Making error predictions

Suppose you expand $\sqrt{x-10}$ in a Taylor polynomial of degree 3 about the center $x_{0}=12$. For $h_{1}=0.5$, you find that the Taylor truncation error is about 10^{-4}.

What is the Taylor truncation error for $h_{2}=0.25$?

Using Taylor approximations to obtain derivatives

Let's say a function has the following Taylor series expansion about $x=2$.

$$
f(x)=\frac{5}{2}-\frac{5}{2}(x-2)^{2}+\frac{15}{8}(x-2)^{4}-\frac{5}{4}(x-2)^{6}+\frac{25}{32}(x-2)^{8}+\mathrm{O}\left((x-2)^{9}\right)
$$

Iclicker question

A function $f(x)$ is approximated by the following Taylor polynomial of degree $n=2$ about $x=2 \pi$

$$
t_{2}(x)=39.4784+12.5664(x-2 \pi)-18.73922(x-2 \pi)^{2}
$$

Determine an approximation for $f^{\prime}(6.1)$
A) 18.7741
B) 12.6856
C) 19.4319
D) 15.6840

Finite difference approximation

For a given smooth function $f(x)$, we want to calculate the derivative $f^{\prime}(x)$ at $x=1$.
Suppose we don't know how to compute the analytical expression for $f^{\prime}(x)$, but we have available a code that evaluates the function value:

```
def f(x):
    # do stuff here
    feval = ...
    return feval
```

Can we find an approximation for the derivative with the available information?

Demo: Finite Difference

$f(x)=e^{x}-2$
We want to obtain an approximation for $f^{\prime}(1)$
d fexact $=e^{x}$
dfapprox $=\frac{e^{x+h}-2-\left(e^{x}-2\right)}{h}$
$\operatorname{error}(h)=a b s(d$ fexact $-d$ fapprox $)$
error $<\left|f^{\prime \prime}(\xi) \frac{h}{2}\right|$

Demo: Finite Difference

$f^{\prime}(x)=\lim _{h \rightarrow 0}\left(\frac{f(x+h)-f(x)}{h}\right)$
Should we just keep decreasing the perturbation h, in order to approach the limit $h \rightarrow 0$ and obtain a better approximation for the derivative?

