
CA_4_linear_system_instructor

October 25, 2019

In [1]: %matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
from CA_4_support import *

1 Steady-State Advection Diffusion Equation

Consider the following ordinary differential equation (ODE) for x in the interval [−1, 1]:

−u′′(x) + u′(x) = f (x)

With boundary conditions

u(−1) = u(1) = 0

Here, f (x) is a known function and u(x) is the unknown that we are trying to solve for.

1.0.1 Spectral Element Approximation

The spectral element method (SEM) is a way to solve such an ODE numerically. In the simplest
case, SEM approximates u(x) by a polynomial of degree N.

A polynomial can be uniquely described by P = N + 1 points on the interval [−1, 1]. So the
SEM introduces a set of P discrete points
−1 = x0 < x1 < x2 < · · · < xN−1 < xN = 1
and constructs a linear system
Au = b
that is solved to obtain the value of u at each point.
Here, the vector u = [u1, u2, . . . , uN−1]

T, where ui = u(xi) for i = 1, 2, . . . , N − 1.
We exclude the points x0 = −1 and xN = 1 because we already know the value of u because

of the boundary conditions.
b is a vector that depends on the function f .
We’ll provide a function that takes a polynomial order N as input and creates both the par-

tition points xi defined in the interval ([−1, 1], and the system matrix A. We’ll also provide a
function that takes the points xi and a known function f (x) and returns the vector b. The function
signatures are defined below:

A,x = SEM_system_1(N)

1

def f(z):
define the function f as a function of z
return f

b = SEM_rhs_1(f,x)

Generate the arrays A, b, and x using the provided functions. Use for example N = 30
For the function f , use f (x) = 2(x− 1)

In [2]: # clear
N = 30 # polynomial order
A,x = SEM_system_1(N)

def f(z):
return 2*(z-1)

b = SEM_rhs_1(f,x)

Check out the shapes of all 3 objects

In [3]: print(A.shape)
print(x.shape)
print(b.shape)

(29, 29)
(31,)
(29,)

The array of points x is of size N + 1 but the matrix and right hand side lead to a linear system
of size (N − 1) × (N − 1). This is because we don’t need to solve for the value of u at the two
endpoints.

Use A, b, and x to solve for u. Check your solution against the exact solution ue(x) = x2 − 1.
Don’t forget to add zeros to the start and end of the vector to account for the boundary conditions.
Do the two solutions match up?

In [4]: # clear

u = np.linalg.solve(A,b)
u_plot = np.append(np.append(0,u),0) # add boundary conditions back
u_exact = x**2 - 1

In [5]: plt.plot(x,u_plot,'o')
plt.plot(x,u_exact,'r')

Out[5]: [<matplotlib.lines.Line2D at 0x10c109c18>]

2

You can run the cells above changing the number of points. Use larger and smaller values.
What do you notice?

The solution will change for different right hand sides. Experiment with different functions
f (x) and see what the solution looks like. For example, try the function:

f (x) = sin(1.5πx)

Note that since your ODE has not changed, your system matrix A is still the same! You only
need to redefine the vector b.

In [6]: #Define b
#clear
def f(z):

return np.sin(1.5*np.pi*z)

b = SEM_rhs_1(f,x)

In [7]: #Obtain u and plot
#clear
u = np.linalg.solve(A,b)
u_plot = np.append(np.append(0,u),0)

plt.plot(x,u_plot,'-o')

Out[7]: [<matplotlib.lines.Line2D at 0x114b617f0>]

3

2 Time-Dependent Advection Diffusion

Now we’ll look at the time-dependent advection diffusion equation, which is a partial differential
equation (PDE)

∂u
∂t

+
∂u
∂x
− D

∂2u
∂x2 = 0

with boundary conditions:

u(−1, t) = 0 =
∂u
∂x

(1, t)

Where D = 0.1 is the diffusion coefficient. Notice how the boundary condition at the right
hand side is a little different than the first equation.

In order to solve this equation we again use the SEM. However, the equation is time dependent,
so we also partition the time dimension:

0 = t0 < t1 < t2 < . . .

.
We assume the ti’s are evenly spaced with distance ∆t.
Now, the solution u depends on both space and time: u(x, t). For each time tn, we can define a

vector of values of u like above:
u(n) = [u(n)

1 , . . . , u(n)
N]T. Here u(n)

i = u(xi, tn). We assume we know u(x, 0) so that u(n) is
known. Then we get a timestepping scheme:

4

Au(1) = b(0) (1)

Au(2) = b(1) (2)

Au(3) = b(2) (3)
... (4)

Au(n+1) = b(n) (5)

Here b(n) is a vector that depends on u(n).
Now, the solution u depends on both space and time: u(x, t). For each time tn, we can define a

vector of values of u like above:
u(n) = [u(n)

1 , . . . , u(n)
N]T. Here u(n)

i = u(xi, tn). We assume we know u(x, 0) so that u(0) is
known. Then we get a timestepping scheme:

Au(1) = b(0) (6)

Au(2) = b(1) (7)

Au(3) = b(2) (8)
... (9)

Au(n+1) = b(n) (10)

Here b(n) is a vector that depends on u(n), and can be obtained using the helper function:

b = SEM_rhs_2(un)

We’ll select a value of ∆t = 0.01 and take 200 timesteps.

In [8]: dt = 0.01 # time increment
timesteps = 200 # number of time steps
N = 50 # polynomial order

The matrix A depends not just on the polynomial order N but also the value of ∆t. We provide
the helper function:

A,x = SEM_system_2(N,dt)

Generate the arrays A, and x.

In [9]: #clear
A,x = SEM_system_2(N,dt)

We also provide a function that defines the initial condition u(x, 0).

In [10]: def u_initial(z):
a = -10*(z+1)*z**6*(z-1)*(z< 0)
return a

5

We will store all the vectors u(0), u(1), u(2),. . . as columns of a matrix. Initialize with zeros the
2d numpy array (matrix) u with the appropriate shape. Update the first column with the initial
condition using the function u_initial.

In [11]: #clear
u = np.zeros((x.shape[0],timesteps+1))
store the initial condition in the zeroth column
u[:,0] = u_initial(x)

In [12]: # plot initial condition
plt.plot(x,u[:,0],'o-')
plt.xlabel('x')
plt.ylabel('u')
plt.title('Initial Condition')
plt.show()

Generate the array b corresponding to the initial condition u[:,0]

In [13]: #clear
First time step
u_old = u[:,0]
b = SEM_rhs_2(u_old)

Let’s take the first time step and store the solution in u[:,1]. Make sure you are handling the
size of your arrays correctly and are adding back the boundary condition at x = 0

6

In [14]: #clear
u_new = np.linalg.solve(A,b)
u[:,1] = np.append(0,u_new) # add back boundary condition

Now you can take the second time step, and store your solution in u[:,2]

In [15]: # clear
u_old = u[:,1]
b = SEM_rhs_2(u_old)
u_new = np.linalg.solve(A,b)
u[:,2] = np.append(0,u_new) # add back boundary condition

Let’s plot what you have so far:

In [16]: plt.plot(x,u[:,0],label = '$\mathbf{u}^{(0)}$')
plt.plot(x,u[:,1],label ='$\mathbf{u}^{(1)}$')
plt.plot(x,u[:,2],label = '$\mathbf{u}^{(2)}$')
plt.xlabel('x')
plt.ylabel('u')
plt.legend()
plt.show()

Only 198 time steps to go... We’ll obviously want to do this in a loop. But calling
np.linalg.solve every time step is too expensive. We’ll want to use the LU decomposition of
A to make computing the solution less expensive. Here A = PLU, where P−1 = PT and L and U
are lower and upper diagonal matrices

7

The equation
Au(n+1) = b(n)

is transformed into
PLUu(n+1) = b(n)

so
u(n+1) = U−1L−1PTb(n)

In [17]: import scipy.linalg as sla

sla.solve_triangular?

Compute the LU factorization of A using scipy.linalg.lu and invert L and U using
scipy.linalg.solve_triangular

Check out the documentation for scipy.linalg.solve_triangular before you use them. In
particular, pay attention to the argument lower, and unit_diagonal

In [18]: import scipy.linalg as sla

In [19]: #clearn
P,L,U = sla.lu(A)

for i in range(2,timesteps):
u_old = u[:,i]
b = SEM_rhs_2(u_old)
b1 = (P.T).dot(b)
b2 = sla.solve_triangular(L,b1,lower=True,unit_diagonal=True)
u_new = sla.solve_triangular(U,b2,lower=False,unit_diagonal=False)
u[:,i+1] = np.append(0,u_new)

In [20]: sla.solve_triangular?

Use plt.spy to plot the non-zero pattern of each matrix

In [21]: plt.figure()
plt.spy(P)
plt.figure()
plt.spy(L)
plt.figure()
plt.spy(U)

Out[21]: <matplotlib.image.AxesImage at 0x61635acc0>

8

9

We can plot the time history of the solution using a movie:

In [22]: from matplotlib import animation,rc
from IPython.display import HTML

fig,ax = plt.subplots()
ax.set_xlim((-1,1))
ax.set_ylim((0,1.0))
line, = ax.plot([],[],lw=2)

def init():
line.set_data([],[])
return (line,)

def animate(i):
y = u[:,i]
line.set_data(x,y)
return (line,)

anim = animation.FuncAnimation(fig, animate, init_func=init,
frames=200, interval=50, blit=True)

rc('animation',html='html5')
anim

Out[22]: <matplotlib.animation.FuncAnimation at 0x616507128>

10

3 Time-Dependent Diffusion Equation

Now we’ll look at the closely related time-dependent diffusion equation

∂u
∂t
− D

∂2u
∂x2 = 0

with boundary conditions:

u(−1, t) = 0 = u(1, t)

We’ll get another time-stepping scheme of the same form:

Au(1) = b(0) (11)

Au(2) = b(1) (12)

Au(3) = b(2) (13)
... (14)

Au(n+1) = b(n) (15)

We will again define the number of time steps, the time increment, the polynomial degree and
use a helper function to construct the matrix A:

In [23]: dt = 0.01
timesteps = 200

11

N = 50
A,x = SEM_system_3(N,dt)

The diffusion equation leads to a symmetric positive-definite matrix. This means that A = AT

and the eigenvalues of A are positive. (You’ll learn about eigenvalues next week).

• Check if the matrix is symmetric:
• Check if the matrix has all positive eigenvalues (you can use np.linalg.eigvals(A))

In [24]: #clearn
check for symmetry
print(np.allclose(A,A.T))

check that smallest eigenvalue is positive
eig_vals = np.linalg.eigvals(A)
print(np.min(eig_vals) > 0)

True
True

Instead of an LU factorization, we’ll use the Cholesky factorization: A = UTU, where U is
an upper triangular matrix. This is a more efficient factorization method for symmetric positive-
definite matrices - about half the number of floating operations of LU factorization.

Let’s compare the computational time for both methods using large N:

In [25]: N = 200
A,x = SEM_system_3(N,dt)

In [26]: %timeit sla.cholesky(A)

231 µs ± 5.9 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

In [27]: %timeit sla.lu(A)

418 µs ± 40.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

For the time evolution we’ll set N = 50, we have the following system matrix A and initial
condition:

In [28]: N = 50
A,x = SEM_system_3(N,dt)

def u_initial(z):
a = -10*(z+1)*z**6*(z-1)*(z< 0)
return a

12

We will store all the vectors u(0), u(1), u(2),. . . as columns of a matrix. Initialize with zeros the
2d numpy array (matrix) u with the appropriate shape. Update the first column with the initial
condition using the function u_initial.

In [29]: #clear
u = np.zeros((x.shape[0],timesteps+1))

u[:,0] = u_initial(x)

Use scipy.linalg.cholesky and scipy.linalg.solve_triangular to evolve the solution for-
ward. Use the helper function

b = SEM_rhs_3(un)

to create the right hand side as before.

In [30]: # clear
U = sla.cholesky(A)

for i in range(timesteps):
u_old = u[:,i]
b = SEM_rhs_3(u_old)
b1 = sla.solve_triangular(U.T,b,lower=True,unit_diagonal=False)
u_new = sla.solve_triangular(U,b1,lower=False,unit_diagonal=False)
u[:,i+1] = np.append(0,np.append(u_new,0))

Again, we’ll plot the solution using a movie:

In [31]: fig,ax = plt.subplots()
ax.set_xlim((-1,1))
ax.set_ylim((0,1.0))
line, = ax.plot([],[],lw=2)

def init():
line.set_data([],[])
return (line,)

def animate(i):
y = u[:,i]
line.set_data(x,y)
return (line,)

anim = animation.FuncAnimation(fig, animate, init_func=init,
frames=100, interval=50, blit=True)

rc('animation',html='html5')
anim

Out[31]: <matplotlib.animation.FuncAnimation at 0x6166d8eb8>

13

In [32]: uSEM = np.copy(u)

4 Diffusion Equation Finite Difference equation

The spectral element method is useful, but these simple 1D problems can be solved with the much
cheaper finite difference method.

The finite difference method replaces the second derivative with a centered difference approxi-
mation:

∂2u
∂x2 ≈

u(x− ∆x)− 2u(x) + u(x + ∆x)
∆x2

This leads to the following tri-diagonal matrix:

A =



a b
b a b

b a b
.

b a b
b a


where

a = 1 +
∆t

5(∆x)2

b =
−∆t

10(∆x)2

14

(the empty spaces are zeros)
We’ll define the number of interior points N, as well as ∆t, ∆x, and the number of timesteps.

In [33]: N = 50
x = np.linspace(-1,1,N+2) # N+2 because of the two boundary points
dx = x[1] - x[0]

dt = 0.01
timesteps = 200

Build the N × N finite difference matrix A specified above as a numpy array. You may find
numpy.diag useful

In [34]: # clear
build FD matrix
D = np.diag(2*np.ones(N)) - np.diag(np.ones(N-1),1) - np.diag(np.ones(N-1),-1)
A = np.eye(N) + 0.1*(dt/(dx**2))*D

Use plt.spy to see structure of the matrix

In [35]: plt.spy(A,markersize = 1)

Out[35]: <matplotlib.lines.Line2D at 0x6164135c0>

This is a tri-diagonal matrix, which is a special case of a banded linear system. We’ll use
scipy.linalg.solve_banded which takes advantage of this structure to solve this system.

However, this function does not take the full matrix A, but only it’s diagonals stored in a numpy
array:

15

A→

 b b b . . . b b
a a a a . . . a a
b b b b . . . b


Declare a new numpy array that stores the entries of A in this manner. Store it in A_diag.

In [36]: # clear
A_diag = np.zeros((3,N))
A_diag[1] = np.diag(A)
A_diag[0,1:] = np.diag(A,k = 1)
A_diag[2,:-1] = np.diag(A,k=-1)

We will store all the vectors u(0), u(1), u(2),. . . as columns of a matrix. Initialize with zeros the
2d numpy array (matrix) u with the appropriate shape. Update the first column with the initial
condition using the function u_initial.

In [37]: def u_initial(z):
a = -10*(z+1)*z**6*(z-1)*(z< 0)
return a

u = np.zeros((x.shape[0],timesteps+1))
u[:,0] = u_initial(x)

For the finite difference method, it turns out the right hand side is just the previous solution:

Au(n+1) = u(n)

Use scipy.linalg.solve_banded to evolve the solution forward.

In [38]: # clear
for i in range(timesteps):

u_old = u[:,i]
b = u_old[1:-1]
u_new = sla.solve_banded((1,1),A_diag,b)
u[:,i+1] = np.append(0,np.append(u_new,0))

We can plot it again in a movie. It should look the same as the spectral element solution that
was computed previously.

In [39]: fig,ax = plt.subplots()
ax.set_xlim((-1,1))
ax.set_ylim((0,1.0))
line, = ax.plot([],[],lw=2)

def init():
line.set_data([],[])
return (line,)

def animate(i):

16

y = u[:,i]
line.set_data(x,y)
return (line,)

anim = animation.FuncAnimation(fig, animate, init_func=init,
frames=100, interval=50, blit=True)

rc('animation',html='html5')
anim

Out[39]: <matplotlib.animation.FuncAnimation at 0x615ee5550>

17

	Steady-State Advection Diffusion Equation
	Spectral Element Approximation

	Time-Dependent Advection Diffusion
	Time-Dependent Diffusion Equation
	Diffusion Equation Finite Difference equation

