
CA-Least-Squares-Instructor-Final

December 2, 2019

1 A Least Squares Predictor for Fantasy Football

In Fantasy Football, contestants choose from a pool of available (American) football players to
build a team. Contestants’ teams score points depending on how their chosen players performed
in real-life. The more points scored, the better!

There are literally hundreds of websites and blogs dedicated to predicting who will have a
good game. They use a variety of methodologies (including no methodology at all) to generate
their predictions. We will try to develop a predictor using Linear Least Squares that will answer
the question: "Should I pick this player?"

Bonus: This activity may help you with MP5, since you will be using similar data structures in
that assignment.

We’ll import our standard packages, along with pandas, which is a python data analysis library.

In [1]: import numpy as np
import numpy.linalg as la
import pandas as pd

There are two data sets, FF-data-2018.csv and FF-data-2019.csv that were collected using
scoring from the Yahoo Fantasy Football platform. The 2018 data was collected from here. You
can choose other years going back to 2011 from a variety of platforms.

Let’s read in the data and see what it looks like.

In [2]: ff_2018 = pd.read_csv('FF-data-2018.csv')
ff_2018

Out[2]: Week Year GID Name Pos Team h/a Oppt YH points \
0 1 2018 1242 Fitzpatrick; Ryan QB tam a nor 42.28
1 1 2018 1151 Brees; Drew QB nor h tam 31.56
2 1 2018 1231 Rivers; Philip QB lac h kan 29.96
3 1 2018 1523 Mahomes II; Patrick QB kan a lac 28.34
4 1 2018 1252 Rodgers; Aaron QB gnb h chi 24.94
...
6350 16 2018 7013 Indianapolis Def ind h nyg 2.00
6351 16 2018 7010 Denver Def den a oak 1.00
6352 16 2018 7029 Tampa Bay Def tam a dal 1.00
6353 16 2018 7015 Kansas City Def kan a sea -1.00
6354 16 2018 7012 Green Bay Def gnb a nyj -2.00

1

http://rotoguru1.com/cgi-bin/fyday.pl?week=16&year=2018&game=yh&scsv=1

YH salary
0 25.0
1 33.0
2 31.0
3 27.0
4 39.0
... ...
6350 13.0
6351 16.0
6352 10.0
6353 13.0
6354 15.0

[6355 rows x 10 columns]

There are 6,355 data points which have a number of fields. They are: - Week: The NFL season
features 17 weeks of games, and each team plays 16 games in this time period. This column tells
you which week the player’s game was. I didn’t include week 17, because many of the best players
take that week off.

• Year: Which year the game was played. For this data set, all the year values are equal to
2018.

• GID: A unique ID tag for each player. We’ll ignore this column.

• Name: The actual name of the player. In the case of defenses, the defense of the entire team
is included, so in that case, this is the name of a city.

• Pos: This is the position of the player. The available choices are quarterback (QB), running
back (RB), wide receiver (WR), tight end (TE), and defense (Def).

• Team: An abbreviation that indicates which team the player belongs to. Ryan Fitzpatrick
was a member of the Tampa Bay Buccaneers, so his Team value is "tam".

• h/a: Whether the player’s game was played at home or on the road. The possible values are
’h’ (home) and ’a’ (away).

• Oppt: The opposing team that the player faced. Ryan Fitzpatrick played against the New
Orleans Saints in week 1, so his Oppt value is "nor".

• YH points: The amount of points the player scored that week. Ryan Fitzpatrick scored a
whopping 42.28 points in week 1.

• YH salary: On many Fantasy Football sites, you start with a certain budget, and select a team
of players within the constraints of that budget. Ryan Fitzpatrick only took 25.0 "dollars" of
your available budget if you selected him on your team. It gives an indication of how the
platform judges the quality of a player.

We can access the labels and put them in a list:

2

In [3]: labels = list(ff_2018.columns)
print(labels)

['Week', 'Year', 'GID', 'Name', 'Pos', 'Team', 'h/a', 'Oppt', 'YH points', 'YH salary']

We can print out the available values of the positions for the data set by passing the key Pos as
a string to the data set.

In [4]: print(ff_2018['Pos'].values)

['QB' 'QB' 'QB' ... 'Def' 'Def' 'Def']

To remove all the duplicates, we can call the function numpy.unique to access all distinct values.
(Just like every other time you use a new function, review the documentation of numpy.unique!
You can do so by running a cell with the following command: np.unique?)

In [5]: positions = np.unique(ff_2018['Pos'])
print(positions)

['Def' 'QB' 'RB' 'TE' 'WR']

Since the positions in football are so different, we really want to focus on one at a time. It
would be very ambitious to try and create a general predictor for all positions. Let’s focus on
quarterbacks first.

How can we extract all the data for quarterbacks? We can find the rows in the dataframe that
has position equal to QB

In [6]: POS = 'QB'
ff_2018['Pos'] == POS

Out[6]: 0 True
1 True
2 True
3 True
4 True

...
6350 False
6351 False
6352 False
6353 False
6354 False
Name: Pos, Length: 6355, dtype: bool

We will create another (smaller) dataframe that has the rows referring to the quarterback posi-
tion.

In [7]: df_POS = ff_2018[ff_2018['Pos'] == POS].copy()
df_POS.head()

3

Out[7]: Week Year GID Name Pos Team h/a Oppt YH points \
0 1 2018 1242 Fitzpatrick; Ryan QB tam a nor 42.28
1 1 2018 1151 Brees; Drew QB nor h tam 31.56
2 1 2018 1231 Rivers; Philip QB lac h kan 29.96
3 1 2018 1523 Mahomes II; Patrick QB kan a lac 28.34
4 1 2018 1252 Rodgers; Aaron QB gnb h chi 24.94

YH salary
0 25.0
1 33.0
2 31.0
3 27.0
4 39.0

We can access the names of all the quarterbacks by referring to the columns Name

In [8]: df_POS['Name']

Out[8]: 0 Fitzpatrick; Ryan
1 Brees; Drew
2 Rivers; Philip
3 Mahomes II; Patrick
4 Rodgers; Aaron

...
5968 Allen; Kyle
5969 Sudfeld; Nate
5970 Mannion; Sean
5971 Hoyer; Brian
5972 Hill; Taysom
Name: Name, Length: 586, dtype: object

Linear Least Squares works with numerical data, not strings. Eventually, we will want our
predictive models to incorporate whether the player played at home or on the road, or how good
their opponent was. But the columns h/a and Oppt are strings:

In [9]: df_POS['h/a']

Out[9]: 0 a
1 h
2 h
3 a
4 h

..
5968 h
5969 h
5970 a
5971 h
5972 h
Name: h/a, Length: 586, dtype: object

4

In [10]: df_POS['Oppt']

Out[10]: 0 nor
1 tam
2 kan
3 lac
4 chi

...
5968 atl
5969 hou
5970 ari
5971 buf
5972 pit
Name: Oppt, Length: 586, dtype: object

At this point, we need to make decisions about what numerical values these should take. For
the home/away column:

• let’s make an array with the value +1.0 when the game is played at home, and -1.0 when the
game is played away.

• store this array as another column in the pandas dataframe, with label home_away

In [11]: df_POS['home_away'] = np.where(df_POS['h/a']=='a',-1,1)
df_POS

Out[11]: Week Year GID Name Pos Team h/a Oppt YH points \
0 1 2018 1242 Fitzpatrick; Ryan QB tam a nor 42.28
1 1 2018 1151 Brees; Drew QB nor h tam 31.56
2 1 2018 1231 Rivers; Philip QB lac h kan 29.96
3 1 2018 1523 Mahomes II; Patrick QB kan a lac 28.34
4 1 2018 1252 Rodgers; Aaron QB gnb h chi 24.94
...
5968 16 2018 1536 Allen; Kyle QB car h atl 1.52
5969 16 2018 1507 Sudfeld; Nate QB phi h hou 0.00
5970 16 2018 1484 Mannion; Sean QB lar a ari -0.20
5971 16 2018 1336 Hoyer; Brian QB nwe h buf -0.20
5972 16 2018 1530 Hill; Taysom QB nor h pit -1.00

YH salary home_away
0 25.0 -1
1 33.0 1
2 31.0 1
3 27.0 -1
4 39.0 1
...
5968 0.0 1
5969 20.0 1
5970 20.0 -1

5

5971 20.0 1
5972 20.0 1

[586 rows x 11 columns]

For the opponents, we need some kind of information about how many points they give
up to a position on average. We have compiled that information in a separate file, called
team_rankings.py. Importing this file will give us access to a collection of dictionaries that pro-
vides this information.

After importing this file, the number vs_2018[Pos][team] will give us a relevant ranking.

In [12]: from team_rankings import * # asterik just means we import everything from that namespace

We can take a look at the keys in the dictionary:

In [13]: print(vs_2018.keys())

dict_keys(['QB', 'WR', 'RB', 'TE', 'Def'])

Note that the keys are just the player positions. Let’s see the information for the key QB (we
have been storing this string in the variable POS)

In [14]: vs_2018[POS]

Out[14]: {'ari': 28,
'atl': 1.0,
'bal': 29.0,
'buf': 32.0,
'car': 9.0,
'chi': 31.0,
'cin': 3.0,
'cle': 13.0,
'dal': 24.0,
'den': 27.0,
'det': 15.0,
'gnb': 12.0,
'hou': 19.0,
'ind': 21.0,
'jac': 23.0,
'kan': 5.0,
'lac': 25.0,
'lar': 20.0,
'mia': 10.0,
'min': 30.0,
'nor': 2.0,
'nwe': 18,
'nyg': 16.0,
'nyj': 6.0,

6

'oak': 8,
'phi': 11.0,
'pit': 17.0,
'sea': 22.0,
'sfo': 7.0,
'tam': 4.0,
'ten': 26.0,
'was': 14}

In [15]: print(vs_2018[POS]['atl'])
print(vs_2018[POS]['buf'])

1.0
32.0

There are 32 football teams in the NFL.
The fact that vs_2018['QB']['atl'] has the value 1.0, means that the Atlanta Falcons gave up

the most points to quarterbacks on average in the 2018 season.
Since vs_2018['QB']['buf'] has the value 32.0, this means that the Buffalo Bills gave up the

least points to quarterbacks on average in the 2018 season.
So, we would expect a better performance out of a quarterback if he is playing the Atlanta

Falcons, compared to the Buffalo Bills.
The rankings can be very different for different positions:

In [16]: print(vs_2018['RB']['atl'])
print(vs_2018['RB']['buf'])
print()
print(vs_2018['WR']['atl'])
print(vs_2018['WR']['buf'])
print()
print(vs_2018['TE']['atl'])
print(vs_2018['TE']['buf'])
print()
print(vs_2018['Def']['atl'])
print(vs_2018['Def']['buf'])
print()

4.0
7.0

6.0
29.0

20.0
32.0

21.0
2.0

7

For the quarterback position (POS = ’QB’), convert the strings in the column Oppt into their
corresponding numerical values using the dictionary vs_2018. Store this as another column of the
pandas dataframe oppt_rank

In [17]: def get_rank(x):
return vs_2018[POS][x]

df_POS['oppt_rank'] = df_POS['Oppt'].apply(get_rank)
df_POS

Out[17]: Week Year GID Name Pos Team h/a Oppt YH points \
0 1 2018 1242 Fitzpatrick; Ryan QB tam a nor 42.28
1 1 2018 1151 Brees; Drew QB nor h tam 31.56
2 1 2018 1231 Rivers; Philip QB lac h kan 29.96
3 1 2018 1523 Mahomes II; Patrick QB kan a lac 28.34
4 1 2018 1252 Rodgers; Aaron QB gnb h chi 24.94
...
5968 16 2018 1536 Allen; Kyle QB car h atl 1.52
5969 16 2018 1507 Sudfeld; Nate QB phi h hou 0.00
5970 16 2018 1484 Mannion; Sean QB lar a ari -0.20
5971 16 2018 1336 Hoyer; Brian QB nwe h buf -0.20
5972 16 2018 1530 Hill; Taysom QB nor h pit -1.00

YH salary home_away oppt_rank
0 25.0 -1 2.0
1 33.0 1 4.0
2 31.0 1 5.0
3 27.0 -1 25.0
4 39.0 1 31.0
...
5968 0.0 1 1.0
5969 20.0 1 19.0
5970 20.0 -1 28.0
5971 20.0 1 32.0
5972 20.0 1 17.0

[586 rows x 12 columns]

Now, players’ names will be repeated in the array names for every game they played. We will
find it convenient to have another array collecting the names without these repeats. We’ll use
pandas.Series.unique to do this.

In [18]: unique_players = df_POS['Name'].unique()
len(unique_players)

Out[18]: 73

8

So 73 quarterbacks played in 2018. But there are only 32 teams! Who are all these people?

In [19]: print(unique_players[7])
print(unique_players[72])

Brady; Tom
Sudfeld; Nate

I know who Tom Brady is, but I’ve never heard of Nate Sudfeld. Let’s count how many times
a players played a game.

We can use groupby to group players by Name, and then count the number of times each
player appears:

In [20]: df_POS.groupby('Name')['Name'].count()

Out[20]: Name
Allen; Brandon 1
Allen; Josh 11
Allen; Kyle 1
Anderson; Derek 2
Barkley; Matt 1

..
Webb; Joe 2
Weeden; Brandon 1
Wentz; Carson 11
Wilson; Russell 15
Winston; Jameis 10
Name: Name, Length: 73, dtype: int64

We want to add the frequency (game count) back to the original dataframe, and for that we
will use transform to return an aligned index.

In [21]: df_POS['game_count'] = df_POS.groupby('Name')['Name'].transform('count')
df_POS

Out[21]: Week Year GID Name Pos Team h/a Oppt YH points \
0 1 2018 1242 Fitzpatrick; Ryan QB tam a nor 42.28
1 1 2018 1151 Brees; Drew QB nor h tam 31.56
2 1 2018 1231 Rivers; Philip QB lac h kan 29.96
3 1 2018 1523 Mahomes II; Patrick QB kan a lac 28.34
4 1 2018 1252 Rodgers; Aaron QB gnb h chi 24.94
...
5968 16 2018 1536 Allen; Kyle QB car h atl 1.52
5969 16 2018 1507 Sudfeld; Nate QB phi h hou 0.00
5970 16 2018 1484 Mannion; Sean QB lar a ari -0.20
5971 16 2018 1336 Hoyer; Brian QB nwe h buf -0.20
5972 16 2018 1530 Hill; Taysom QB nor h pit -1.00

9

YH salary home_away oppt_rank game_count
0 25.0 -1 2.0 8
1 33.0 1 4.0 15
2 31.0 1 5.0 15
3 27.0 -1 25.0 15
4 39.0 1 31.0 15
...
5968 0.0 1 1.0 1
5969 20.0 1 19.0 1
5970 20.0 -1 28.0 2
5971 20.0 1 32.0 4
5972 20.0 1 17.0 15

[586 rows x 13 columns]

Note that Nate Sudfeld only played in 1 game in 2018. He probably took over when the starter
was injured, or when his team was involved in a lopsided game. We probably want to remove his
data, since it won’t be very helpful.

Let’s us create an array of the names of all the players that are relevant to our analysis. For
that, we will exclude the names for all the players that participated in less than min_games.

In [22]: min_games = 5
relevant_players = df_POS[df_POS['game_count']>=min_games]['Name'].unique()
print(len(relevant_players))
relevant_players

43

Out[22]: array(['Fitzpatrick; Ryan', 'Brees; Drew', 'Rivers; Philip',
'Mahomes II; Patrick', 'Rodgers; Aaron', 'Wilson; Russell',
'Brady; Tom', 'Keenum; Case', 'Flacco; Joe', 'Luck; Andrew',
'Cousins; Kirk', 'Smith; Alex', 'Newton; Cam', 'Dalton; Andy',
'Goff; Jared', 'Tannehill; Ryan', 'Darnold; Sam', 'Bortles; Blake',
'Trubisky; Mitchell', 'Watson; Deshaun', 'Stafford; Matthew',
'Roethlisberger; Ben', 'Ryan; Matt', 'Carr; Derek',
'Prescott; Dak', 'Manning; Eli', 'Allen; Josh', 'Jackson; Lamar',
'Gabbert; Blaine', 'Mariota; Marcus', 'Hill; Taysom',
'Wentz; Carson', 'Mayfield; Baker', 'Rosen; Josh',
'Beathard; C.J.', 'Winston; Jameis', 'Osweiler; Brock',
'Daniel; Chase', 'Dobbs; Joshua', 'Kessler; Cody', 'Driskel; Jeff',
'Heinicke; Taylor', 'Mullens; Nick'], dtype=object)

Now we only consider 43 quarterbacks playing in 2018.

1.0.1 Let’s put all of this together!

Write a function prepare_data that creates the dataframe df_POS for a given player position. The
function also returns as an argument the list of relevant unique players.

10

In [23]: def prepare_data(ff_data,POS,min_games):
returns (new_df,relevant_players) as described above
#clear
df_POS = ff_data[ff_data['Pos'] == POS].copy()
df_POS['home_away'] = np.where(df_POS['h/a']=='a',-1,1)
df_POS['oppt_rank'] = df_POS['Oppt'].apply(get_rank)
df_POS['game_count'] = df_POS.groupby('Name')['Name'].transform('count')
df_new = df_POS[df_POS['game_count']>=min_games].copy()
relevant_players = df_POS[df_POS['game_count']>=min_games]['Name'].unique()
return(df_POS, relevant_players)

Test out that your function works as expected:

In [24]: df_test,players_test = prepare_data(ff_2018,'WR',3)
df_test

Out[24]: Week Year GID Name Pos Team h/a Oppt YH points \
144 1 2018 5485 Hill; Tyreek WR kan a lac 38.8
145 1 2018 5459 Thomas; Michael WR nor h tam 30.0
146 1 2018 3770 Jackson; DeSean WR tam a nor 29.1
147 1 2018 5125 Cobb; Randall WR gnb h chi 24.7
148 1 2018 5212 Stills; Kenny WR mia h ten 24.6
...
6231 16 2018 5570 Cole; Keelan WR jac a mia 0.0
6232 16 2018 5387 Hardy; Justin WR atl a car 0.0
6233 16 2018 5692 Beebe; Chad WR min a det 0.0
6234 16 2018 5595 Hall; Marvin WR atl a car 0.0
6235 16 2018 5684 Moore; J'Mon WR gnb a nyj -2.0

YH salary home_away oppt_rank game_count
144 28.0 -1 25.0 15
145 37.0 1 4.0 15
146 14.0 -1 2.0 12
147 15.0 1 31.0 8
148 17.0 1 26.0 14
...
6231 10.0 -1 10.0 15
6232 10.0 -1 9.0 15
6233 10.0 -1 15.0 3
6234 10.0 -1 9.0 15
6235 10.0 -1 6.0 9

[2278 rows x 13 columns]

2 Simple Model - Last n games

We’ll start with a simple linear model. For now, we will keep using our example where we con-
structed a dataset for quarterbacks in the variable df_POS, along with relevant_players

11

The points scored in the previous n games will be the only data considered when making a
prediction. Let’s look at what the model would look like for only one player, say Andy Dalton,
with n = 3.

In [25]: pl = relevant_players[13]
pl_points = df_POS[df_POS['Name']==pl]['YH points'].values

print('Player:', pl)
print('Points:', pl_points)

Player: Dalton; Andy
Points: [17.52 26.6 18.08 25.78 13.92 17.16 8.92 20.2 8.92 19.34 9.1]

Andy Dalton played 11 games. So we could try to build a model that predicted the points he
scored in his 4th game, based on his first 3, and similarly try to predict the points he scored in the
5th games based on games 2,3, and 4.

I.e. a "local" least squares system might look something like

Ax ∼= b

where

A =



17.52 26.6 18.08
26.6 18.08 25.78
18.08 25.78 13.92
25.78 13.92 17.16
13.92 17.16 8.92
17.16 8.92 20.2
8.92 20.2 8.92
20.2 8.92 19.34


, b =



25.78
13.92
17.16
8.92
20.2
8.92
19.34
9.1


This was with n = 3 games. If instead, we base our "local" least squares on the previous n = 4

games, then our system would instead look like:

A =



17.52 26.6 18.08 25.78
26.6 18.08 25.78 13.92

18.08 25.78 13.92 17.16
25.78 13.92 17.16 8.92
13.92 17.16 8.92 20.2
17.16 8.92 20.2 8.92
8.92 20.2 8.92 19.34


, b =



13.92
17.16
8.92
20.2
8.92
19.34
9.1


Write a function that generates this local system for a given (relevant) player. Use the example

above to debug your function (i.e., data for Andy Dalton)

In [26]: def player_point_history(df, pl, n_games):
df: dataframe
rel_player (string): name of a player
n_games (int): number of games used for the prediction
clear

12

pts = df[df['Name']==pl]['YH points'].values

m = pts[n_games:].shape[0]
A = np.zeros((m,n_games))
for k in range(n_games):

A[:,k] = pts[k:-n_games + k]
b = pts[n_games:]

return A,b

A,b = player_point_history(df_POS, relevant_players[13], 4)
print(A)
print(b)

[[17.52 26.6 18.08 25.78]
[26.6 18.08 25.78 13.92]
[18.08 25.78 13.92 17.16]
[25.78 13.92 17.16 8.92]
[13.92 17.16 8.92 20.2]
[17.16 8.92 20.2 8.92]
[8.92 20.2 8.92 19.34]]

[13.92 17.16 8.92 20.2 8.92 19.34 9.1]

Now, with this function, we can loop over the relevant players, generate their local systems,
and "stack" them on top of each other to generate the global system. We’ll do this with n = 3

In [27]: n_games = 3

empty array for right hand side of size M x 1
pts_scored = np.array([])

empty array for matrix of size M x n_games. We had to reshape to size 0 x n_games to allow for "stacking"
game_hist = np.array([]).reshape(0,n_games)

for pl in relevant_players:
generate local system
a,c = player_point_history(df_POS,pl,n_games)

use numpy.append to append local system to global vector
pts_scored = np.append(pts_scored,c)

use numpy.vstack (i.e. "vertical stack") to stack the global matrix and the local matrix
game_hist = np.vstack((game_hist,a))

print(pts_scored.shape)
print(game_hist.shape)

(383,)

13

(383, 3)

2.0.1 When should we start a player?

It would be an overly ambitious task to try to predict a players exact point total. What we can do
instead is set a "threshold". I.e. if a player’s points exceed this threshold, then we can deem them
"startable". If they don’t exceed this threshold, then we should look choose a different player.

What threshold should we use? That’s debatable, but I’ve compiled the following dictionary
based on additional data I collected from nfl.com.

In [28]: start_threshold = {'QB': 19.3999, 'RB': 14.599, 'WR': 15.099, 'TE': 7.899, 'Def': 7.499}

So, if a quarterback scores more than 19.3999, we declare them startable. If a defense scores
less than 7.499, then we should pick a different defense, etc.

We can finally set up our least squares system. Set the matrix A to the variable game_hist
defined above. The components of the vector b should have a value of +1.0 if the corresponding
component of pts_scored exceeds the threshold, and -1.0 if it lies below the threshold. (I chose
the thresholds so that it is impossible for the points to equal the threshold).

Set up the right hand side vector, and solve the Linear Least Squares problem for x. You can
use numpy.linalg.lstsq to compute the least-squares solution. Then compute a numpy array
b_predict that tests how this linear model performs on the data.

In [29]: threshold = start_threshold[POS]
A = game_hist

clear
b = np.sign(pts_scored - threshold)
LSTQ = la.lstsq(A,b,rcond=None)
x = LSTQ[0]
b_predict = np.sign(A@x)

We can have the following situations: - The prediction tells you to start a player that ends
up performing poorly (a "false positive") - The prediction tells you to exclude a player that ends
up performing well (a "false negative") - The prediction tells you to start a player that ends up
performing well (a correct prediction)

Compute the number of false positives, false negatives, and correct prediction. What percent-
age of each do we obtain on the data?

In [30]: # clear
false_positive = np.sum(b_predict > b)
false_negative = np.sum(b > b_predict)
correct_prediction = np.sum(b == b_predict)

print(false_positive)
print(false_negative)
print(correct_prediction)
print()
print(false_positive/b.shape[0])

14

print(false_negative/b.shape[0])
print(correct_prediction/b.shape[0])

13
138
232

0.033942558746736295
0.360313315926893
0.6057441253263708

The model is only correct 60.57% of the time. However, it only return a "false positive" 3.39%
of the time, which is very nice: if the model tells you to start a player, there’s a good chance you
will be happy with the results.

Let’s put it all together into a single function. This will mostly be copying and pasting from
above. The function should return the variables A, b, x.

In [31]: def linear_predictor(ff_data, Pos, min_games, n_games, threshold):
clear

df,relevant_players = prepare_data(ff_data,Pos,min_games)

pts_scored = np.array([])
game_hist = np.array([]).reshape(0,n_games)

for pl in relevant_players:
a,c = player_point_history(df,pl,n_games)
pts_scored = np.append(pts_scored,c)
game_hist = np.vstack((game_hist,a))

A = game_hist
b = np.sign(pts_scored - threshold)

LSTQ = np.linalg.lstsq(A,b,rcond = None)
x = LSTQ[0]
#

return A, b, x

We can call the routine for any position, and we can tweak the number of min_games and
n_games. You can also tweak the threshold. Try changing the input variables and see how this
affects model accuracy

In [32]: Pos = 'WR'
min_games = 5
n_games = 3
threshold = start_threshold[Pos]

15

A, b, x = linear_predictor(ff_2018, Pos, min_games, n_games, threshold)

clear
b_predict = np.sign(A@x)

false_negative = np.sum(b > b_predict)
false_positive = np.sum(b_predict > b)
correct_prediction = np.sum(b == b_predict)

print(false_negative)
print(false_positive)
print(correct_prediction)
print()
print(false_negative/b.shape[0])
print(false_positive/b.shape[0])
print(correct_prediction/b.shape[0])

201
144
1287

0.12316176470588236
0.08823529411764706
0.7886029411764706

Notice we didn’t make use of the fact that a player is playing on home or on the road, or the
ranking of the opponent. Let’s try to enrich the features used in this problem to include this data.
Let’s go back to Andy Dalton:

In [33]: pl = relevant_players[13]
pl_points = df_POS[df_POS['Name']==pl]['YH points'].values
pl_home_away = df_POS[df_POS['Name']==pl]['home_away'].values
pl_oppt_rank = df_POS[df_POS['Name']==pl]['oppt_rank'].values

print('Player:', pl)
print('Points:', pl_points)
print('Location:', pl_home_away)
print('Opp Rank:', pl_oppt_rank)

Player: Dalton; Andy
Points: [17.52 26.6 18.08 25.78 13.92 17.16 8.92 20.2 8.92 19.34 9.1]
Location: [-1 1 -1 -1 1 1 -1 1 1 -1 1]
Opp Rank: [21. 29. 9. 1. 10. 17. 5. 4. 2. 29. 13.]

When n = 3 we had the following system when we only took previous games played:

16

A =



17.52 26.6 18.08
26.6 18.08 25.78
18.08 25.78 13.92
25.78 13.92 17.16
13.92 17.16 8.92
17.16 8.92 20.2
8.92 20.2 8.92
20.2 8.92 19.34


, b =



25.78
13.92
17.16
8.92
20.2
8.92
19.34
9.1


With the location and opponent data, it should now look like this:

A =



17.52 26.6 18.08 −1 1
26.6 18.08 25.78 1 10
18.08 25.78 13.92 1 17
25.78 13.92 17.16 −1 5
13.92 17.16 8.92 1 4
17.16 8.92 20.2 1 2
8.92 20.2 8.92 −1 29
20.2 8.92 19.34 1 13


, b =



25.78
13.92
17.16
8.92
20.2
8.92
19.34
9.1


Create an enriched linear regression, by adding these two extra columns to the matrix A. The

routine should return A with the two added columns. It should also return the right hand side b
and least-squares solution x.

In [34]: def linear_predictor_enriched(ff_data, Pos, min_games, n_games, threshold):
clear

df,relevant_players = prepare_data(ff_data,Pos,min_games)

pts_scored = np.array([])
game_hist = np.array([]).reshape(0,n_games+2)

for pl in relevant_players:
a,c = player_point_history(df,pl,n_games)
location = df[df['Name']==pl]['home_away'].values
opponent = df[df['Name']==pl]['oppt_rank'].values
last_two_columns = np.vstack((location[n_games:],opponent[n_games:])).T
anew = np.hstack((a,last_two_columns))

pts_scored = np.append(pts_scored,c)
game_hist = np.vstack((game_hist,anew))

b = np.sign(pts_scored - threshold)
A = game_hist

LSTQ = np.linalg.lstsq(A,b,rcond = None)
x = LSTQ[0]
#

17

return A, b, x

This enriched version is considerably better for running backs, with our standard inputs:

In [35]: Pos = 'RB'
min_games = 5
n_games = 3
threshold = start_threshold[Pos]

A, b, x = linear_predictor(ff_2018, Pos, min_games, n_games, threshold)

b_predict = np.sign(A@x)
false_negative = np.sum(b > b_predict)
false_positive = np.sum(b_predict > b)
correct_prediction = np.sum(b == b_predict)

print('Standard Model')
print('Fraction of false negatives: ', false_negative/b.shape[0])
print('Fraction of false positives: ', false_positive/b.shape[0])
print('Fraction of correct predictions:', correct_prediction/b.shape[0])
print()

A, b, x = linear_predictor_enriched(ff_2018, Pos, min_games, n_games, threshold)

b_predict = np.sign(A@x)

false_negative = np.sum(b > b_predict)
false_positive = np.sum(b_predict > b)
correct_prediction = np.sum(b == b_predict)

Standard Model
Fraction of false negatives: 0.161400512382579
Fraction of false positives: 0.161400512382579
Fraction of correct predictions: 0.677198975234842

But it’s not very effective for quarterbacks:

In [36]: Pos = 'WR'
min_games = 10
n_games = 1
threshold = start_threshold[Pos]

A, b, x = linear_predictor(ff_2018, Pos, min_games, n_games, threshold)

b_predict = np.sign(A@x)
false_negative = np.sum(b > b_predict)

18

false_positive = np.sum(b_predict > b)
correct_prediction = np.sum(b == b_predict)

print('Standard Model')
print('Fraction of false negatives: ', false_negative/b.shape[0])
print('Fraction of false positives: ', false_positive/b.shape[0])
print('Fraction of correct predictions:', correct_prediction/b.shape[0])
print()

A, b, x = linear_predictor_enriched(ff_2018, Pos, min_games, n_games, threshold)

b_predict = np.sign(A@x)

false_negative = np.sum(b > b_predict)
false_positive = np.sum(b_predict > b)
correct_prediction = np.sum(b == b_predict)

print('Enriched Model')
print('Fraction of false negatives: ', false_negative/b.shape[0])
print('Fraction of false positives: ', false_positive/b.shape[0])
print('Fraction of correct predictions:', correct_prediction/b.shape[0])
print()

Standard Model
Fraction of false negatives: 0.13917216556688664
Fraction of false positives: 0.20695860827834434
Fraction of correct predictions: 0.6538692261547691

Enriched Model
Fraction of false negatives: 0.131373725254949
Fraction of false positives: 0.008998200359928014
Fraction of correct predictions: 0.859628074385123

The number of false positives has shot up dramatically. Despite the (slightly) better accuracy,
I would probably avoid this one.

It seems that running backs are more "matchup-dependent" than quarterbacks. That is, where
they are playing and how good the other team is are bigger factors in their performance compared
to quarterbacks.

3 Validation set

Of course, you never want to conclude anything about your model based on the data you used
to construct it. You should validate its accuracy on a different data set. We can do so on this
years fantasy football data. We can also select the optimal hyperparameters (a fancy word for
parameters) based on this validation set.

Some questions to ask as you test the model on the validation set:

19

• Should we include the home/away and opponent data or not?
• Is our decision to exclude players that have played less than 5 games a good one? Should

we bump that number up to 7 games? Or down to 3?
• How many games should we include in our history? Is 3 games really the best choice? What

about 5? What about just the last game?

I.e. the inclusion of the extra data, the minimum number of games, and the history length are
the hyperparameters for this model.

In [37]: ff_2019 = pd.read_csv('FF-data-2019.csv')

position
Pos = 'WR'

these are your hyperparameters
min_games = 5
n_games = 2
enriched = True

build model on 2018 data and retrieve least squares solution x
if enriched:

OUT_2018 = linear_predictor_enriched(ff_2018, Pos, min_games,n_games,threshold)
x = OUT_2018[2]

else:
OUT_2018 = linear_predictor(ff_2018, Pos, min_games,n_games,threshold)
x = OUT_2018[2]

retrieve Data matrix A and outcomes vector b using 2019 data
if enriched:

OUT_2019 = linear_predictor_enriched(ff_2019, Pos, min_games,n_games,threshold)
A,b = OUT_2019[0], OUT_2019[1]

else:
OUT_2019 = linear_predictor(ff_2019, Pos, min_games,n_games,threshold)
A,b = OUT_2019[0], OUT_2019[1]

assess model
b_predict = np.sign(A@x)

false_negative = np.sum(b > b_predict)
false_positive = np.sum(b_predict > b)
correct_prediction = np.sum(b == b_predict)
print('Fraction of false negatives: ', false_negative/b.shape[0])
print('Fraction of false positives: ', false_positive/b.shape[0])
print('Fraction of correct predictions:', correct_prediction/b.shape[0])
print()

Fraction of false negatives: 0.10348258706467661
Fraction of false positives: 0.004975124378109453

20

Fraction of correct predictions: 0.891542288557214

21

	A Least Squares Predictor for Fantasy Football
	Let's put all of this together!

	Simple Model - Last n games
	When should we start a player?

	Validation set

