
CA-PCA-FIFA-instructor

December 11, 2019

In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
sns.set(font_scale=2)
sns.set_style("whitegrid")

1 Principal Components of FIFA Dataset

Like the last class activity, we will be using the data analysis library pandas. This time we will be
looking at the FIFA 2018 Dataset. While this is a video game, the developers strive to make their
game as accurate as possible, so this data reflects the skills of the real-life players.

Let’s load the data frame using pandas.

In [2]: df = pd.read_csv("FIFA_2018.csv",encoding = "ISO-8859-1",index_col = 0, low_memory = False)

We can take a brief look at the data by calling df.head(). The first 34 columns are attributes
that describe the behavior (e.g. aggression) or the skills (e.g. ball control), of each player. The final
columns show the player’s position, name, nationality, and the club they play for.

The four positions are forward (FWD), midfielder (MID), defender (DEF), and goalkeeper
(GK).

In [3]: df.head()

Out[3]: Acceleration Aggression Agility Balance Ball control Composure \
0 89 63 89 63 93 95
1 92 48 90 95 95 96
2 94 56 96 82 95 92
3 88 78 86 60 91 83
4 58 29 52 35 48 70

Crossing Curve Dribbling Finishing ... Sprint speed Stamina \
0 85 81 91 94 ... 91 92
1 77 89 97 95 ... 87 73
2 75 81 96 89 ... 90 78
3 77 86 86 94 ... 77 89
4 15 14 30 13 ... 61 44

1

https://www.kaggle.com/thec03u5/fifa-18-demo-player-dataset/kernels

Standing tackle Strength Vision Volleys Position Name \
0 31 80 85 88 FWD Cristiano Ronaldo
1 28 59 90 85 FWD L. Messi
2 24 53 80 83 FWD Neymar
3 45 80 84 88 FWD L. Suarez
4 10 83 70 11 GK M. Neuer

Nationality Club
0 Portugal Real Madrid CF
1 Argentina FC Barcelona
2 Brazil Paris Saint-Germain
3 Uruguay FC Barcelona
4 Germany FC Bayern Munich

[5 rows x 38 columns]

A higher number signifies that an attribute is more prevalent for that player. Looking at the
above rankings, Player 0 (Christiano Ronaldo) has very good ball control and composure, but is
not overly aggressive.

Correlation Matrix We can compute the correlation matrix for these variables across all players
using a "heatmap". Calling df.corr() provides this correlation matrix, and seaborn.heatmap will
do the plotting.

In [4]: plt.figure(figsize=(15,8))
sns.heatmap(df.corr(),vmin=-1.0,vmax=1.0, linewidth=0.25, cmap='coolwarm');

2

This heatmap is dark red whenever two variables are positively correlated, and dark blue
when they are negatively correlated. For example, "Sprint Speed" and "Acceleration" are positively
correlated. "Balance" and "Strength" are negatively correlated however.

Notice across the diagonal, all rectangles are dark red. This is to be expected, as any variable
is perfectly correlated with itself.

Also notice that all Goal-Keeping skills are positively correlated with each other, but are neg-
atively correlated with nearly all the other variables. Maybe we can compress these into a single
component/feature through principal component analysis.

2 Principal Component analysis

Recall that Principal Component Analysis (PCA) projects high-dimensional data into a low-
dimensional representation by finding directions of maximal variance.

Let’s first create a new dataframe that includes only the attributes of each player (and not the
last four columns of df). Store this new dataframe as a variable X.

In [5]: #clear
X = df.iloc[:,:-4].copy()

We can get all the attribute names and store them as labels by using .columns.values

In [6]: #clear
labels = X.columns.values
#labels

To perform PCA, we first shift the data so that each attribute has zero mean, then compute the
Singular Value Decomposition (SVD) of the resulting data matrix.

Create the data frame A where each attribute has zero mean. Should we ensure each row has
zero mean, or each column?

In [7]: #clear
X = df.iloc[:,:-4].copy()

In [8]: # clear
A = X - X.mean()
A.mean()

Out[8]: Acceleration 2.167865e-13
Aggression -1.467107e-12
Agility -4.619496e-14
Balance -1.782434e-13
Ball control 1.092776e-12
Composure 1.111679e-12
Crossing 1.600354e-12
Curve 1.192740e-12
Dribbling 1.508677e-12

3

Finishing 1.276988e-12
Free kick accuracy 1.505077e-12
GK diving 4.589444e-14
GK handling 5.571325e-14
GK kicking 9.023588e-14
GK positioning -7.729508e-14
GK reflexes -2.862759e-14
Heading accuracy -1.318541e-12
Interceptions -1.023297e-12
Jumping 7.924063e-13
Long passing 1.456835e-12
Long shots -1.819519e-12
Marking 7.227232e-13
Penalties 1.203584e-13
Positioning 6.242075e-13
Reactions 3.090709e-13
Short passing 7.371135e-13
Shot power -9.480112e-13
Sliding tackle 3.611079e-13
Sprint speed -8.388917e-13
Stamina -3.460696e-13
Standing tackle 8.578911e-13
Strength 2.334315e-13
Vision 1.559979e-12
Volleys 8.684768e-13
dtype: float64

Now compute the SVD of the resulting matrix. Make sure you compute the reduced SVD, not
the full one, since the full SVD will take a long time to finish.

Once you have computed the SVD, you can plot the fraction of explained variance for each
singular value

σ2
i

∑r
k=1 σ2

k
i = 1, 2, . . . , r (1)

as well as the cumulative explained variance

∑i
k=1 σ2

k

∑r
k=1 σ2

k
i = 1, 2, . . . , r (2)

You can create a bar plot of the fraction of explained variance for each singular value using
plt.bar, and a standard line plot for the cumulative explained variance.

In [9]: # clear
U, S, Vt = np.linalg.svd(A, full_matrices = False)
V = Vt.T

variance = S**2
sum_var = sum(variance)

4

var_exp = [v/sum_var for v in variance]
cum_var = np.cumsum(var_exp)

plt.figure(figsize=(10,6))
plt.bar(range(34),var_exp,label='individual explained variance')
plt.plot(range(34),cum_var,'ro-', label='cumulative explained variance')
plt.legend(loc=5)
plt.xlabel("components")
plt.ylabel("% variance")
plt.show()

You should see from the graph that the first principal component is responsible for nearly 60%
of the variance, and the first two principal components have well over 70%.

Recall from the SVD that Avi = σiui. Writing the columns of A as ak, this means that:

v(1)
i


...

a1
...

+ v(2)
i


...

a2
...

+ · · ·+ v(n)
i


...

an
...

 = σiui (3)

where v(j)
i is the j-th component of vi. Thus if we define the principal components as

pi = σiui,

the i-th column of V describes the projection of each attribute onto that principal direction.
We can visualize the weight of each attribute to a given principal component by plotting the

entries of the corresponding column of V. For example, the plot below illustrates the "importance"
of each attribute to the first principal component (p1)

5

In [10]: plt.figure(figsize=(14,6))
plt.bar(labels,V[:,0])
plt.xticks(rotation=90);
plt.title('importance of each attribute in ${\\bf p}_1$');

Now, let’s add two new columns to the original dataframe df, with headers pc1 and pc2.
Use the expression above to evaluate the first two principal components p1 and p2

In [11]: # clear
df['pc1'] = U[:,0]*S[0]
df['pc2'] = U[:,1]*S[1]
df.head()

Out[11]: Acceleration Aggression Agility Balance Ball control Composure \
0 89 63 89 63 93 95
1 92 48 90 95 95 96
2 94 56 96 82 95 92
3 88 78 86 60 91 83
4 58 29 52 35 48 70

Crossing Curve Dribbling Finishing ... Standing tackle Strength \
0 85 81 91 94 ... 31 80
1 77 89 97 95 ... 28 59
2 75 81 96 89 ... 24 53
3 77 86 86 94 ... 45 80

6

4 15 14 30 13 ... 10 83

Vision Volleys Position Name Nationality \
0 85 88 FWD Cristiano Ronaldo Portugal
1 90 85 FWD L. Messi Argentina
2 80 83 FWD Neymar Brazil
3 84 88 FWD L. Suarez Uruguay
4 70 11 GK M. Neuer Germany

Club pc1 pc2
0 Real Madrid CF -123.550481 90.062030
1 FC Barcelona -118.138937 108.176601
2 Paris Saint-Germain -107.616170 92.809286
3 FC Barcelona -99.767468 71.759809
4 FC Bayern Munich 167.616507 28.394824

[5 rows x 40 columns]

Let’s plot the data with these first two principal components.

In [12]: g = sns.lmplot(x = "pc1", y = "pc2", data = df, hue = "Position", fit_reg=False, height=11, aspect=2, legend=True,
scatter_kws={'s':14,'alpha':0.5})

ax = g.axes[0,0]
ax.axvline(x=0,color='k', ls = '--')
ax.axhline(y=0,color='k', ls = '--')
plt.show()

It looks like the first principal axis determines whether a player is a goalkeeper or not. We
should double-check to make sure.

What are the attributes of A that are most positively correlated with the first principal compo-
nent?

7

We can answer that by looking at the plot of coefficients above. Or we can do this in a sys-
tematic way, by sorting the entries of the column of V and finding the ones with highest positive
values.

Find the first 5 attributes, and print their corresponding weights.

In [13]: # clear
ind = np.argsort(V[:,0])
print(ind)
print(labels[ind[-5:]])
print(V[ind[-5:],0])
print(labels[ind[:5]])

[8 23 20 6 4 7 26 9 10 33 25 29 16 19 22 30 1 17 27 21 0 2 28 5
32 3 24 18 31 13 12 14 11 15]

['GK kicking' 'GK handling' 'GK positioning' 'GK diving' 'GK reflexes']
[0.19212694 0.19755409 0.19848829 0.20711799 0.21038404]
['Dribbling' 'Positioning' 'Long shots' 'Crossing' 'Ball control']

You can see that all the goalkeeper attributes are positively correlated with the first principal
component. However, all other attributes, beginning with "Strength" are negatively correlated.
Try plotting the projection of "GK reflexes" onto the first two principal components

In [14]: g = sns.lmplot(x = "pc1", y = "pc2", data = df, hue = "Position", fit_reg=False, height=11, aspect=2, legend=True,
markers=["o", "x","^","s"],palette=dict(FWD="g", GK="orange", MID="r", DEF="m"))

ax = g.axes[0,0]
ax.axvline(x=0,color='k', ls = '--')
ax.axhline(y=0,color='k', ls = '--')

scale = 400 # this will scale the size of the arrow plot
J = 3 # looking at the position "GK reflexes", corresponding to column 31
x = V[J,0] # projection of "GK reflexes" onto first principal component
y = V[J,1] # projection of "GK reflexes" onto second principal component

make an arrow from the origin to a point at (x,y)
ax.arrow(0,0,scale*x,scale*y,color='black',width=1)
ax.text(x*scale*1.05,y*scale*1.05,labels[J],fontsize=24)

J = 9 # looking at the position "GK reflexes", corresponding to column 31
x = V[J,0] # projection of "GK reflexes" onto first principal component
y = V[J,1] # projection of "GK reflexes" onto second principal component

make an arrow from the origin to a point at (x,y)
ax.arrow(0,0,scale*x,scale*y,color='black',width=1)
ax.text(x*scale*1.05,y*scale*1.05,labels[J],fontsize=24)

Out[14]: Text(-81.7848092914674, 106.27381571208693, 'Finishing')

8

If you plot any other of the GK attributes, they will essentially overlap with GK reflexes. Check
that, by changing the variable J above to take the values (11,12,13,14).

Make the same plot as above, but now take a look at other attributes. In the same figure, plot
the projections for the attributes in columns [1,8,9,16,28,31].

Do you think the results make sense?

In [15]: #clear

g = sns.lmplot(x = "pc1", y = "pc2", data = df, hue = "Position", fit_reg=False, height=11, aspect=2, legend=True,
markers=["o", "x","^","s"],palette=dict(FWD="g", GK="orange", MID="r", DEF="m"))

ax = g.axes[0,0]
ax.axvline(x=0,color='k', ls = '--')
ax.axhline(y=0,color='k', ls = '--')

scale = 300 # this will scale the size of the arrow plot

for J in [1,8,9,16,28,31]:

x = V[J,0]
y = V[J,1]

make an arrow from the origin to a point at (x,y)
ax.arrow(0,0,scale*x,scale*y,color='black',width=1)
ax.text(x*scale*1.5,y*scale*1.1,labels[J],fontsize=24)

9

2.1 Remove data and re-do PCA

The first principal component seems to mainly dictate whether a player is a goal-keeper or not. To
find out more about the data, we can drop all goal-keepers and repeat PCA.

We first create a new data-frame with all goal-keepers removed:

In [16]: df2 = df[df["Position"] != "GK"].copy()

Now we remove all the columns associated with the attributes that are mostly associated with
goal-keepers. We also remove the columns with pc1 and pc2

In [17]: df2 = df2.drop(['GK diving',
'GK handling',
'GK kicking',
'GK positioning',
'GK reflexes','pc1','pc2'],1)

Repeat all the steps from the previous analysis: shift to zero-mean, obtain svd, plot explained
variances.

In [18]: # clear

Y = df2.iloc[:,:-4].copy()

B = Y - Y.mean()
u, s, vt = np.linalg.svd(B, full_matrices = False)
v = vt.T

variance = s**2
sum_var = sum(variance)
var_exp = [vv/sum_var for vv in variance]

10

cum_var = np.cumsum(var_exp)

plt.figure(figsize=(10,6))
plt.bar(range(29),var_exp,label='individual explained variance')
plt.plot(range(29),cum_var,'ro-',label='cumulative explained variance')
plt.legend(loc=0)
plt.xlabel("components")
plt.ylabel("% variance")
plt.show()

Add the first two components to the data frame and plot them in a scatter plot.

In [19]: # clear
df2['pc1'] = u[:,0]*s[0]
df2['pc2'] = u[:,1]*s[1]

In [20]: #clear

g = sns.lmplot(x = "pc1", y = "pc2", data = df2, hue = "Position", fit_reg=False, height=11, aspect=2, legend=True,
markers=["o", "^","s"],palette=dict(FWD="g", MID="r", DEF="m"))

ax = g.axes[0,0]
ax.axvline(x=0,color='k', ls = '--')
ax.axhline(y=0,color='k', ls = '--')

Out[20]: <matplotlib.lines.Line2D at 0x10ed807f0>

11

Plot the weights of each attribute corresponding to the principal component 1:

In [21]: #clear

labels_new = Y.columns.values

plt.figure(figsize=(14,6))
plt.bar(labels_new,v[:,0])
plt.xticks(rotation=90);
plt.title('importance of each attribute in ${\\bf p}_1$');

12

In the same figure, plot the projections for the attributes in columns [4,9,11,12,14,3,12] onto
principal components 1 and 2.

In [25]: #clear

g = sns.lmplot(x = "pc1", y = "pc2", data = df2, hue = "Position", fit_reg=False, height=11, aspect=2, legend=True,
markers=["o", "^","s"],palette=dict(FWD="g", MID="r", DEF="m"))

ax = g.axes[0,0]
ax.axvline(x=0,color='k', ls = '--')
ax.axhline(y=0,color='k', ls = '--')

scale = 300 # this will scale the size of the arrow plot

for J in [4,9,11,12,14,3,12]:

x = v[J,0]
y = v[J,1]

make an arrow from the origin to a point at (x,y)
ax.arrow(0,0,scale*x,scale*y,color='black',width=1)
ax.text(x*scale*1.5,y*scale*1.1,labels_new[J],fontsize=28)

In [26]: #clear

g = sns.lmplot(x = "pc1", y = "pc2", data = df2[df2['Position'] == 'DEF'], hue = "Position", fit_reg=False, height=11, aspect=2, legend=True,
markers=["s"],palette=dict(DEF="m"))

ax = g.axes[0,0]

13

ax.axvline(x=0,color='k', ls = '--')
ax.axhline(y=0,color='k', ls = '--')

scale = 300 # this will scale the size of the arrow plot

for J in [4,9,11,12,14,3,12]:

x = v[J,0]
y = v[J,1]

make an arrow from the origin to a point at (x,y)
ax.arrow(0,0,scale*x,scale*y,color='black',width=1)
ax.text(x*scale*1.5,y*scale*1.1,labels_new[J],fontsize=28)

14

	Principal Components of FIFA Dataset
	Principal Component analysis
	Remove data and re-do PCA

