Nonlinear Equations
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How can we /

solve these
equations?
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* Spring force: 00

F=kx 0.00 0.02 004 006 0.08 0.10

x [m]

What is the displacement when o

F = 2N? 40 -

* Drag force: 5

F=05C;pAv?=pug v* &7

What is the Velocity when
F = 20N>
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* Spring force:

fx)=kx—F=0 o tg = 0.5 Ns/m

* Drag force:

f) = pg v*—F =0
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Find the root (zero) of the 20 |

nonlinear equation f (U) e
v Im/s

Nonlinear Equations in 1D
Goal: Solve f(x) =0 for f: R > R

Often called Root Finding
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Convergence

* The bisection method does not estimate X, the approximation of the

desired root X. It instead finds an interval smaller than a given

tolerance that contains the root. A«tK < ‘IJD) —— §{'bf>$
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Convergence

An iterative method converges with rate 7 if:

|l €r+1l] )
l =C, 0<(C<w ( 2
[ >0 e | !
r = 1: linear convergence NOW B\m\f\

r > 1: superlinear COHV€I‘g€HC€

r =2 quadratic convergence

Linear convergence gains a constant number of accurate digits each step

(and € < 1 matters!

Quadratic convergence doubles the number of accurate digits in each step

(however it only starts making sense once ||€|| is small (and C does not

\_ Mmatter much)
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Example: ol v <o |
Consider the nonlinear equation Zk > .\_(9;@ @JK > %ZQ‘%j\
ol L .

f(x) =0.5x% -2

and solving f(x) =0 using the Bisection Method. For each of the initial
intervals below, how many iterations are required to ensure the root is

accurate within 247

A) [-10,-1.8] k> %Q%—%} - 703 —> 0y least & RO

B) [-3,—2.1] 5T cop't ol Lsd since 6l\gn(§@>:
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Bisection Method - summary

(d The function must be continuous with a root in the interval [a, b]

d Requires only one function evaluations for each iteration!

O The first iteration requires two function evaluations.

' Given the initial internal [a, b], the length of the interval after k

. . . b—a
1terations 1s —x
2

J Has linear convergence

Demo: “Bisection Method”
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Newton’s method

* Recall we want to solve f(x) =0 for f: R > R

* The Taylor expansion: ,
! pnon [ineay fuodzon
S

flx +h) = fx) + f'(xk)/’}J
-5
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Ny [I'neay approX
gives a linear approximation for the nonlinear function f near Xj.

J(XKJJQ -0 — JQQX)JJF 3C><XL>L'L =0

h :;JCX@ —» newten 5{?{3
— 5060

Xo = Witial ppess
XK’\’\ = XK’(' h




: I
Newton’s method
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A) =2

B) 0.75
C) —15
D) 15
E) 3.0

Iclicker question

Consider solving the nonlinear equation

5 =2.0e* + x?2

W) = 9+ x5
() - 9¢ + 2X

What is the result of applying one iteration of Newton’s method for solving

nonlinear equations with initial starting guess Xy = 0, i.e. what is X7

(3)

_:-—h/

£i0-5)

Xy = Xo"?c/b@_: OJLQ
} ()

7€’ +9 z

[x, = 1.64[
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Newton’s Method - summary

(J Must be started with initial guess close enough to root (convergence is

only local). Otherwise it may not converge at all.

[ Requires function and first derivative evaluation at each iteration (think

about two function evaluations)

(d What can we do when the derivative evaluation is too costly (or
difficult to evaluate)?

u Typically has quadratic convergence

e
lim "“2”=C, 0<C <o
koo ||ey|]

Demo: “Newton’s Method” and
“Convergence of Newton’s Method”/
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Secant method

Also derived from Taylor expansion, but instead of using f "(xy), it

approximates the tangent with

X1 = X — [/ (xx)

the secant line:

Secant line:

(Mactww&hf f(xge) = f (xg—1)
: J e = (ke — Xg—1)
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Secant Method - summary

L Still local convergence

[ Requires only one function evaluation per iteration (only the first

iteration requires two function evaluations)
L Needs two starting guesses

J Has slower convergence than Newton’s Method — superlinear

COHVGI’gGDCG

e
hm”k“”=a 1l<r<?
k—oo ||ep||”

Demo: “Secant Method”
Demo: “Convergence of Secant Method”/
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Nonlinear system of equations
{ X4 2% T X ~</f = o

Goal: Solve f(x) = 0 for f: R™ - R" 29X+ 3%, -5 =
In other words, f(x) is a vector-valued function [ ] [
f1(x) f1(x1 X2» x3 ) Xn)
flx)=| :
fn(x) fn(xl X2 x3 xn)

If looking for a solution to f (x) = vy, then instead solve

fX)=fx)-—y=0
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J(x) = 5 5 or [J(x )]l]

Hxis) =0 == J&) + J()g <o

\

Newton’s method

Approximate the nonlinear function f (x) by a linear function using

Taylor expansion: M liwear aPPfDX Similor o
ch*\ / |QS:¥ lor m—t
s ~——
o fox+s) = f(0) +](x) s for N»
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where J(x) isj the Jacobian ;{écrix of the function f:
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Newton’s method :J x) & = -4b) for 5
Algorithm: et ot X = 'Vk(ba& 8*6%
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Convergence:
. Typically has quadratic convergence
* Drawback: Still only locally convergent b mes. [W@t

oot Qe
Cost: /

* Main cost associated with computing the Jacobian matrix and solving

the Newton step. \/@(\\ 24081 SIW Yn&(’wd
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Example

Consider solving the nonlinear system of equations

2=2y+x
4 = x* + 4y*
What is the result of applying one iteration of Newton’s method with the
following initial guess? ) T_ |
7 1o
f6)-]29> -2 o= |* 2] &:%)z[i 1]
R PO o @ 2 o
X —
|4+ 4 | 4

970 I"\ 0t2b=| — 20=1-19 = b¢,0,25/
[ _H }4{‘ = 70.=% S0-\Y 15 - 25
2 o |[b ]| [¥. 7 99| = K= _0s ) )
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Newton’s method - summary

' Typically quadratic convergence (local convergence)

d Computing the Jacobian matrix requires the equivalent of n? function
evaluations for a dense problem (where every function of f (x) depends

on every component of X).

d Computation of the Jacobian may be cheaper if the matrix is sparse.

J The cost of calculating the step S is 0 (n3) for a dense Jacobian matrix

(Factorization + Solve)

( If the same Jacobian matrix J (X} ) is reused for several consecutive
iterations, the convergence rate will sufter accordingly (trade-oft

between cost per iteration and number of iterations needed for

convergence)
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