Nonlinear Equations
linear $f(x)=y \Rightarrow A x=y$
nonlinear: $f\left(x_{k}\right)=y$ iterative autorob.github.io method

Inverse Kinematics

How can we solve these equations?

- Spring force:
$F=k x$

What is the displacement when $F=2 \mathrm{~N}$?

- Drag force:
$F=0.5 C_{d} \rho A v^{2}=\mu_{d} v^{2}$
What is the velocity when
$F=20 \mathrm{~N}$?

- Spring force:

$$
f(x)=k x-F=0
$$

- Drag force: $f(v)=\mu_{d} v^{2}-F=0$

Find the root (zero) of the nonlinear equation $f(v)$

Nonlinear Equations in 1D

Goal: Solve $f(x)=0$ for $f: \mathcal{R} \rightarrow \mathcal{R}$
Often called Root Finding

Convergence

- The bisection method does not estimate x_{k}, the approximation of the desired root x. It instead finds an interval smaller than a given tolerance that contains the root.

$$
\Delta t_{k}<\text { to } \Rightarrow \text { stops }
$$

At each iteration: $\Delta t_{k}=\frac{\Delta t_{k-1}}{2}$

$$
\Delta t_{k}=\frac{\Delta t_{0}}{2^{k}}
$$

Convergence rate: $\lim _{k \rightarrow \infty} \frac{\left|e_{k+1}\right|}{\left|e_{k}\right|}=\frac{\Delta t_{0} / 2^{k+1}}{\Delta t_{0} / 2^{k}}=\frac{2^{k}}{2^{k+1}}=\frac{1}{2}$

Convergence

An iterative method converges with rate r if:
$\lim _{k \rightarrow \infty} \frac{\left\|e_{k+1}\right\|}{\left\|e_{k}\right\|^{r}}=C, \quad 0<C<\infty$
recall power iteration $\lim _{k \rightarrow \infty} \frac{\left\|e_{k+1}\right\|}{\left\|e_{k}\right\|}=\left|\frac{\lambda_{2}}{\lambda_{1}}\right|$
$r=1$: linear convergence
now Bisection

$$
\|=0.5
$$

$r=2$: quadratic convergence

Linear convergence gains a constant number of accurate digits each step (and $C<1$ matters!

Quadratic convergence doubles the number of accurate digits in each step (however it only starts making sense once $\left\|e_{k}\right\|$ is small (and C does not matter much)

Example:

$$
\Delta t_{k}=\frac{|b-a|}{2^{k}}<2^{-4}
$$

Consider the nonlinear equation

$$
2^{k}>\frac{|b-a|}{t o l} \Rightarrow k>\log _{2}\left(\frac{|b-a|}{t o l}\right)
$$

$$
f(x)=0.5 x^{2}-2
$$

and solving $\mathrm{f}(\mathrm{x})=0$ using the Bisection Method. For each of the initial intervals below, how many iterations are required to ensure the root is accurate within 2^{-4} ?
A) $[-10,-1.8] \quad k>\log _{2}\left(\frac{8.2}{2^{-4}}\right)=7.03 \rightarrow$ at least 8 ter
B) $[-3,-2.1] \rightarrow$ it can't be used since sign $(f(a))=$ $\operatorname{sign}(f(b))$
C) $[-4,1.9] \quad k>\log _{2}\left(\frac{5.9}{2^{-4}}\right)=6.56 \rightarrow$ at least 7 iter

Bisection Method - summary

Maxktherincorreet statementabout the Bisection Alethert. -
\square The function must be continuous with a root in the interval $[a, b]$
\square Requires only one function evaluations for each iteration!

- The first iteration requires two function evaluations.
\square Given the initial internal $[a, b]$, the length of the interval after k iterations is $\frac{b-a}{2^{k}}$
\square Has linear convergence

Newton's method

- Recall we want to solve $f(x)=0$ for $f: \mathcal{R} \rightarrow \mathcal{R}$
- The Taylor expansion:
nonlinear function

$$
f(\underbrace{x_{k}+h}_{x_{k+1}}) \approx \underbrace{f\left(x_{k}\right)+f^{\prime}\left(x_{k}\right) h}_{\text {linear approx }}
$$

gives a linear approximation for the nonlinear function f near x_{k}.

$$
\begin{aligned}
& f\left(x_{k}+h\right)=0 \rightarrow f\left(x_{k}\right)+f^{\prime}\left(x_{k}\right) h=0 \\
& \quad h=\frac{-f^{\prime}\left(x_{k}\right)}{-f^{\prime}\left(x_{k}\right)} \rightarrow \text { newton step } \\
& x_{0}=\text { initial guess } \\
& x_{k+1}=x_{k}+h
\end{aligned}
$$

Newton's method

Iclicker question

Consider solving the nonlinear equation

$$
5=2.0 e^{x}+x^{2}
$$

What is the result of applying one iteration of Newton's method for solving nonlinear equations with initial starting guess $x_{0}=0$, i.e. what is x_{1} ?
A) -2
B) 0.75
C) -1.5
D) 1.5
E) 3.0

$$
\begin{aligned}
& f(x)=2 e^{x}+x^{2}-5 \\
& f^{\prime}(x)=2 e^{x}+2 x \\
& x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}=0-\frac{\left(2 e^{0}+0-5\right)}{2 e^{0}+0}=\frac{-(-3)}{2} \\
& x_{1}=1.5
\end{aligned}
$$

Newton's Method - summary

Must be started with initial guess close enough to root (convergence is only local). Otherwise it may not converge at all.
\square Requires function and first derivative evaluation at each iteration (think about two function evaluations)
\square What can we do when the derivative evaluation is too costly (or difficult to evaluate)?
\square Typically has quadratic convergence

$$
\lim _{k \rightarrow \infty} \frac{\left\|e_{k+1}\right\|}{\left\|e_{k}\right\|^{2}}=C, \quad 0<C<\infty
$$

Secant method

Also derived from Taylor expansion, but instead of using $f^{\prime}\left(x_{k}\right)$, it approximates the tangent with the secant line:

$$
x_{k+1}=x_{k}-f\left(x_{k}\right) / f^{\prime}\left(x_{k}\right)
$$

> Secant line:

Secant Method - summary

Still local convergence
\square Requires only one function evaluation per iteration (only the first iteration requires two function evaluations)
\square Needs two starting guesses
\square Has slower convergence than Newton's Method - superlinear convergence

$$
\lim _{k \rightarrow \infty} \frac{\left\|e_{k+1}\right\|}{\left\|e_{k}\right\|^{r}}=C, \quad 1<r<2
$$

Demo: "Secant Method"
Demo: "Convergence of Secant Method"

Nonlinear system of equations

Goal: Solve $\boldsymbol{f}(\boldsymbol{x})=\mathbf{0}$ for $\boldsymbol{f}: \mathcal{R}^{n} \rightarrow \mathcal{R}^{n}$

$$
\left\{\begin{array}{l}
x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{3}-4=0 \\
2 x_{1}+3 x_{2}-5=0
\end{array}\right.
$$

In other words, $\boldsymbol{f}(\boldsymbol{x})$ is a vector-valued function

$$
[\square]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

$$
\boldsymbol{f}(\boldsymbol{x})=\left[\begin{array}{c}
f_{1}(\boldsymbol{x}) \\
\vdots \\
f_{n}(\boldsymbol{x})
\end{array}\right]=\left[\begin{array}{c}
f_{1}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right) \\
\vdots \\
f_{n}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)
\end{array}\right]
$$

If looking for a solution to $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{y}$, then instead solve

$$
f(x)=f(x)-y=0
$$

Newton's method
Approximate the nonlinear function $\boldsymbol{f}(\boldsymbol{x})$ by a linear function using Taylor expansion:

$$
\overbrace{\boldsymbol{f}(\boldsymbol{x}+\boldsymbol{s})}^{x_{k+1}} \approx \overbrace{\boldsymbol{f f}(\boldsymbol{x})+\boldsymbol{J}(\boldsymbol{x}) \boldsymbol{s}}^{\text {nonlinear approx }} \text { Similar to } \begin{aligned}
& \text { Taylor but } \\
& \text { for ND }
\end{aligned}
$$

$$
\begin{aligned}
& \text { where } \boldsymbol{J}(\boldsymbol{x}) \text { is the Jacobian matrix of the function } \boldsymbol{f} \text { : } \\
& \text { where } \boldsymbol{J}(\boldsymbol{x}) \text { is the Jacobian matrix of the function } \boldsymbol{f} \text { : } \\
& \boldsymbol{J}(\boldsymbol{x})=\left(\begin{array}{ccc}
\frac{\partial f_{1}(x)}{\partial x_{1}} & \ldots & \frac{\partial f_{1}(\boldsymbol{x})}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{n}(x)}{\partial x_{1}} & \ldots & \frac{\partial f_{n}(\boldsymbol{x})}{\partial x_{n}}
\end{array}\right) \text { or }[\boldsymbol{J}(\boldsymbol{x})]_{i j}=\frac{\partial f_{i}(\boldsymbol{x})}{\partial x_{j}} \\
& \underset{\sim}{f}(\underset{\sim}{x}+\underset{\sim}{s})=0 \Rightarrow \underset{\sim}{f}(\underset{\sim}{x})+\underset{\sim}{J}(\underset{\sim}{x}) \underset{\sim}{\underset{\sim}{s}}=0 \quad \text { (or } \underset{\sim}{b}+\underset{\sim}{A} \underset{\sim}{s}=0 \rightarrow \underset{\sim}{A} \underset{\sim}{s}=-b \text { for } \underset{\sim}{s} \\
& \underset{\sim}{J} \underset{\sim}{S}=-\underset{\sim}{f} \underset{\sim}{x}(\underset{\sim}{x}) \rightarrow \text { solve for } \underset{\sim}{s}
\end{aligned}
$$

Newton's method

$$
J(x) \underline{S}=-f(x) \text { for le }
$$

Algorithm: start with $x_{0}=$ initial guess for $k=1,2, \ldots$.

$$
\begin{aligned}
& =1,2, \ldots \\
& J=J\left(x_{k}\right) \rightarrow \text { evaluate Jacobian } \rightarrow O\left(n^{2}\right) \\
& b=-f\left(x_{k}\right) \rightarrow \text { evaluate function } \rightarrow O(n) \\
& J s_{k}=b \rightarrow \text { solve for } s_{k} \rightarrow O\left(n^{3}\right) \\
& x_{k+1}=x_{k}+s_{k} \rightarrow \text { upolate }
\end{aligned}
$$

Convergence:

- Typically has quadratic convergence
- Drawback: Still only locally convergent

Cost:

- Main cost associated with computing the Jacobian matrix and solving the Newton step. very expensive method

Example
Consider solving the nonlinear system of equations

$$
\begin{gathered}
2=2 y+x \\
4=x^{2}+4 y^{2}
\end{gathered}
$$

What is the result of applying one iteration of Newton's method with the

$$
\begin{aligned}
& \text { following initial guess? } \quad x_{0}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad f\left(x_{0}\right)=\left[\begin{array}{l}
-1 \\
-3
\end{array}\right] \\
& \underset{\sim}{f(x)}=\left[\begin{array}{l}
2 y+x-2 \\
4 y^{2}+x^{2}-4
\end{array}\right] \quad J=\left[\begin{array}{cc}
1 & 2 \\
2 x & 8 y
\end{array}\right] \quad J_{0}=J\left(x_{0}\right)=\left[\begin{array}{cc}
1 & 2 \\
2 & 0
\end{array}\right] \\
& \left.\left[\begin{array}{ll}
1 & 2 \\
2 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
1 \\
3
\end{array}\right] \Rightarrow \begin{array}{l}
a+2 b=1 \Rightarrow 2 b=1-1.5 \Rightarrow b=-0.25 / / \\
2 a=3 \Rightarrow a=1.5 / 50
\end{array}\right]=\left[\begin{array}{c}
1.5 \\
-0.25
\end{array}\right] \Rightarrow x_{1}=\left[\begin{array}{c}
2.5 \\
-0.25
\end{array}\right] /
\end{aligned}
$$

Newton's method - summary

\square Typically quadratic convergence (local convergence)
\square Computing the Jacobian matrix requires the equivalent of n^{2} function evaluations for a dense problem (where every function of $\boldsymbol{f}(\boldsymbol{x})$ depends on every component of \boldsymbol{X}).
\square Computation of the Jacobian may be cheaper if the matrix is sparse.
\square The cost of calculating the step \boldsymbol{S} is $O\left(n^{3}\right)$ for a dense Jacobian matrix (Factorization + Solve)
\square If the same Jacobian matrix $\boldsymbol{J}\left(\boldsymbol{x}_{\boldsymbol{k}}\right)$ is reused for several consecutive iterations, the convergence rate will suffer accordingly (trade-off between cost per iteration and number of iterations needed for convergence)
for $k=1,2$,

$$
\begin{aligned}
& =1,2,\left\{\begin{array}{l}
J\left(x_{k}\right) \rightarrow \text { evaluate Jacobian } \rightarrow O\left(n^{2}\right) \\
\tilde{J}\left(x_{k}\right) \rightarrow \text { some approx. of Jacobian }
\end{array}\right. \\
& b=-f\left(x_{k}\right) \rightarrow \text { evaluate function } \rightarrow O(n) \\
& \text { compute factorization of } J \rightarrow O\left(n^{3}\right) \\
& J s_{k}=b \rightarrow O\left(n^{2}\right) \\
& x_{k+1}=x_{k}+s_{k} \rightarrow \text { updateady factorized } J \rightarrow O
\end{aligned}
$$

\rightarrow perform these two steps only every few iterations
\rightarrow cheaper $\left.\begin{array}{l}\rightarrow \text { slower convex genence }\end{array}\right\}$ trade off!

