Optimization

Optimization
$\left\{\min _{x} \overline{f(x)}\right.$-objective function
st. $g(x)=0 \rightarrow$ equality constraints
$R(x) \geqslant 0 \longrightarrow$ inequality constraints
x Unconstrained optimization
istorder necessary conditions:

$$
\begin{aligned}
& f^{\prime}\left(x^{*}\right)=0 \quad \nabla f\left({ }^{*}\right)=0 \\
& \Rightarrow x^{*} \text { is a critical point }
\end{aligned}
$$

$2^{\text {nd }}$ order sufficient conditions
$f^{\prime \prime}\left(x^{*}\right)>0 \quad H_{f}\left(x^{*}\right)$ pos. def Min.
$f^{\prime \prime}\left(x^{*}\right)<0 \quad H_{f}\left(x^{*}\right)$ neg. deft MAX.
$f^{\prime \prime}\left(x^{*}\right)=0 \quad H_{f}\left(x^{+}\right)$indefinite SADE

Optimization Methods to solve ID problems

* Golden Section search
- interval $(a, b) \Rightarrow h_{0}=b-a$

- $h_{k+1}=h_{k} \tau \quad \tau=0.618$
- points inside the interval: $x_{1}=a+(1-\tau) h_{k}$

$$
x_{2}=a+\tau h_{k}
$$

- linear convergence $\lim _{k \rightarrow \infty} \frac{e_{k+1}}{e_{k}}=0.618$
- Require only 1 fec. eval per iteration/No need for derivatives!
* Newton
- requires $f^{\prime}(x)$ and $f^{\prime \prime}(x)$
- initial guess x_{0}
- update $x_{k+1}=x_{k}-f^{\prime}\left(x_{k}\right) / f^{\prime \prime}\left(x_{k}\right)$
- quadratic convergence (local)
- depends on initial guess

Optimization in ND:
 Steepest Descent Method

Given a function
$f(\boldsymbol{x}): \mathcal{R}^{n} \rightarrow \mathcal{R}$ at a point \boldsymbol{x}, the function will decrease its value in the direction of steepest descent: $-\boldsymbol{\nabla} f(\boldsymbol{x})$

Iclicker question:
What is the steepest descent direction?

Steepest Descent Method

Start with initial guess:

$$
x_{0}=\left[\begin{array}{l}
3 \\
3
\end{array}\right]
$$

Check the update:

$$
{\underset{\sim}{x}}_{1}=x_{\sim}-\nabla f\left(x_{0}\right)
$$

$\nabla f=\left[\begin{array}{l}2\left(x_{1}-1\right) \\ 2\left(x_{2}-1\right)\end{array}\right] \Rightarrow \nabla f\left(x_{0}\right)=\left[\begin{array}{l}4 \\ 4\end{array}\right]$
$\underset{\sim}{X_{1}}=\left[\begin{array}{l}3 \\ 3\end{array}\right]-\left[\begin{array}{l}4 \\ 4\end{array}\right]=\left[\begin{array}{l}-1 \\ -1\end{array}\right]$

$$
f\left(x_{1}, x_{2}\right)=\left(x_{1}-1\right)^{2}+\left(x_{2}-1\right)^{2}
$$

Steepest Descent Method

Update the variable with:

$$
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\alpha_{k} \boldsymbol{\nabla} f\left(\boldsymbol{x}_{k}\right)
$$

How far along the gradient should we go? What is the "best size" for α_{k} ?

A)	0
B)	0.5
C)	1

D) 2
E) Cannot be determined What is the best α_{k} ?

$$
f\left(x_{1}, x_{2}\right)=\left(x_{1}-1\right)^{2}+\left(x_{2}-1\right)^{2}
$$

$$
\begin{aligned}
& x_{k+1}=x_{k}-\alpha_{k} \nabla f\left(x_{k}\right) \longrightarrow x_{1}=x_{0}-\alpha \nabla f\left(x_{0}\right) \text { what is } \alpha \text { such } \\
& \text { minimized? }
\end{aligned}
$$

Steepest Descent Method

Algorithm:
Initial guess: \boldsymbol{x}_{0}

* Need $f(x)$ and $\nabla f(x)$
* "Many" function evals inside line search

Evaluate: $\boldsymbol{s}_{\boldsymbol{k}}=-\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)$

Perform a line search to obtain α_{k} (for example, Golden Section Search)

$$
\left.\alpha_{k}=\underset{\alpha}{\operatorname{argmin}} \underset{\jmath_{\text {fixed }}}{f\left(\boldsymbol{x}_{k}\right.}+\alpha \boldsymbol{s}_{k}\right)
$$

Update: $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\alpha_{k} \boldsymbol{s}_{k}$

Line Search

$$
x_{k+1}=x_{k}-\alpha_{k} \nabla f\left(x_{k}\right)
$$

What is α_{k} such that $f\left(x_{k+1}\right)$ is minimized ?

$$
\min _{\alpha} f(\underbrace{x_{k}-\alpha \nabla f\left(x_{k}\right)}_{x_{k+1}})
$$

Necessary conclition: $\frac{d f}{d d}=0$
Chain rule:

$$
\begin{aligned}
& \frac{d f}{d \alpha}=\frac{d f}{d x_{k+1}} \frac{d x_{k+1}}{d \alpha} \quad \frac{d x_{k+1}}{d \alpha}=-\nabla f\left(x_{k}\right) \\
& =-\nabla f\left(x_{k+1}\right)^{\top} \nabla f\left(x_{k}\right)=0 \\
& \nabla f\left(x_{k+1}\right) \text { is orthogonal to } \nabla f\left(x_{k}\right) \text { ! }
\end{aligned}
$$

Steepest Descent Method

Demo: Steepest Descent
Convergence: linear

Iclicker question:

Consider minimizing the function

$$
f\left(x_{1}, x_{2}\right)=10\left(x_{1}\right)^{3}-\left(x_{2}\right)^{2}+x_{1}-1
$$

Given the initial guess

$$
x_{1}=2, x_{2}=2
$$

what is the direction of the first step of gradient descent?

$$
\nabla f=\left[\begin{array}{l}
30 x_{1}^{2}+1 \\
-2 x_{2}
\end{array}\right] \quad \nabla f(2,2)=\left[\begin{array}{l}
121 \\
-4
\end{array}\right]
$$

$$
\text { direction of gradient descent } \rightarrow\left[\begin{array}{c}
-121 \\
+4
\end{array}\right]
$$

Newton's Method

* Taylor expansion:

$$
\begin{aligned}
& \text { Taylor expansion: } \\
& \qquad f(x+\underset{\sim}{s}) \cong \underbrace{f(\underset{\sim}{x})+\underset{\sim}{f}(\underset{\sim}{x})^{\top} \underset{\sim}{\mid}+\frac{1}{2} \stackrel{\sim}{\sim}^{\top} \underset{=}{H}(\underset{\sim}{x}) \underset{\sim}{s}}_{\text {quadratic approximation of } f(\underline{\sim})}=\tilde{f}(\underset{\sim}{s})
\end{aligned}
$$

- First-arder necessary condition:

$$
\begin{aligned}
& \underset{\sim}{\nabla} \underset{\sim}{f}(\underset{\sim}{s})=\underset{\sim}{\nabla f}+\frac{1}{2}(\underset{\sim}{H}+\underset{\sim}{H})=\underset{\sim}{0} \\
& \underset{\sim}{\underset{\sim}{S}} \underset{\sim}{\boldsymbol{T}}=-\underset{\sim}{\nabla f} \rightarrow \text { solve linear } \\
& \text { equations for } s \text { ! }
\end{aligned}
$$

Newton's Method

Algorithm:

Initial guess: $\boldsymbol{x}_{\mathbf{0}}$
Solve: $\boldsymbol{H}_{\boldsymbol{f}}\left(\boldsymbol{x}_{\boldsymbol{k}}\right) \boldsymbol{s}_{k}=-\boldsymbol{\nabla} f\left(\boldsymbol{x}_{k}\right)$
Update: $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{\boldsymbol{k}}+\boldsymbol{s}_{k}$

Note that the Hessian is related to the curvature and therefore contains the information about how large the step should be.
(No need for wine search!)

Iclicker question

To find a minimum of the function $f(x, y)=3 x^{2}+$ $2 y^{2}$, which is the expression for one step of Newton's method?
(A) $\left[\begin{array}{l}x_{k+1} \\ y_{k+1}\end{array}\right]=\left[\begin{array}{l}x_{k} \\ y_{k}\end{array}\right]-\left[\begin{array}{ll}6 & 0 \\ 0 & 4\end{array}\right]^{-1}\left[\begin{array}{l}6 x_{k} \\ 4 y_{k}\end{array}\right]$

$$
\begin{aligned}
\nabla F & =\left[\begin{array}{l}
6 x \\
4 y
\end{array}\right] \\
H_{f} & =\left[\begin{array}{ll}
6 & 0 \\
0 & 4
\end{array}\right]
\end{aligned}
$$

B) $\left[\begin{array}{l}x_{k+1} \\ y_{k+1}\end{array}\right]=-\left[\begin{array}{ll}6 & 0 \\ 0 & 4\end{array}\right]^{-1}\left[\begin{array}{l}6 x_{k} \\ 4 y_{k}\end{array}\right]$

$$
H S=-\nabla f
$$

$$
\text { C) }\left[\begin{array}{l}
x_{k+1} \\
y_{k+1}
\end{array}\right]=\left[\begin{array}{ll}
6 & 0 \\
0 & 4
\end{array}\right]^{T}\left[\begin{array}{l}
6 x_{k} \\
4 y_{k}
\end{array}\right] \quad\left[\begin{array}{ll}
6 & 0 \\
0 & 4
\end{array}\right]\left[\begin{array}{l}
s_{1} \\
s_{2}
\end{array}\right]=\left[\begin{array}{l}
-6 x \\
-4 y
\end{array}\right]
$$

$$
\text { D) }\left[\begin{array}{l}
x_{k+1} \\
y_{k+1}
\end{array}\right]=\left[\begin{array}{l}
x_{k} \\
y_{k}
\end{array}\right]-\left[\begin{array}{ll}
6 & 0 \\
0 & 4
\end{array}\right]^{T}\left[\begin{array}{l}
6 x_{k} \\
4 y_{k}
\end{array}\right]\left[\begin{array}{l}
x_{k+1} \\
y_{k+1}
\end{array}\right]=\left[\begin{array}{l}
x_{k} \\
y_{k}
\end{array}\right]-\left[\begin{array}{ll}
6 & 0 \\
0 & 4
\end{array}\right]^{-1}\left[\begin{array}{l}
6 x_{k} \\
4 y_{k}
\end{array}\right]
$$

Iclicker question:

$$
f(x, y)=0.5 x^{2}+2.5 y^{2}
$$

When using the Newton's Method to find the minimizer of this function, estimate the number of iterations it would take for convergence?
A)
B) 2-5
C) $5-10$
D) More than 10
E) Depends on the initial guess

Newton's Method Summary

Algorithm:

Initial guess: \boldsymbol{x}_{0}
Solve: $\boldsymbol{H}_{\boldsymbol{f}}\left(\boldsymbol{x}_{k}\right) \boldsymbol{s}_{k}=-\boldsymbol{\nabla} f\left(\boldsymbol{x}_{k}\right)$
Update: $\boldsymbol{x}_{\boldsymbol{k}+1}=\boldsymbol{x}_{\boldsymbol{k}}+\boldsymbol{s}_{\boldsymbol{k}}$

About the method...

- Typical quadratic convergence $)$
- Need second derivatives $\stackrel{0}{ }$
- Local convergence (start guess close to solution)
- Works poorly when Hessian is nearly indefinite
- Cost per iteration: $O\left(n^{3}\right)$

Example:

https:/ /en.wikipedia.org/wiki/Rosenbrock_function

Iclicker question:

Recall Newton's method and the steepest descent method for minimizing a function $f(\boldsymbol{x}): \mathcal{R}^{n} \rightarrow \mathcal{R}$. How many statements below describe the Newton Method's only (not both)?

1. Convergence is linear SD
2. Requires a line search at each iteration 络
3. Evaluates the Gradient of $f(\boldsymbol{x})$ at each iteration Both
4. Evaluates the Hessian of $f(\boldsymbol{x})$ at each iteration Newton
5. Computational cost per iteration is $O\left(n^{3}\right)$ Newton
A) 1
C) 3
D) 4
E) 5
