
Errors



Scientific Notation

In scientific notation, a number can be expressed in the form

! = ± $ × 10(

where $ is a coefficient in the range 1 ≤ $ < 10 and + is the exponent. 

1165.7 =

0.0004728 =

w
1.1657×103



Error in Numerical Methods

� Every result we compute in Numerical Methods contain errors!
� We always have them… so our job? Reduce the impact of the 

errors
� How can we model the error?
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� Absolute errors can be misleading, depending on the magnitude 
of the true value !.

� Example:

� Relative error is independent of magnitude!
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You are tasked with measuring the height of a tree which is known to be exactly 
170 ft tall. You later realized that your measurement tools are somewhat faulty, 
up to a relative error of 10%. What is the maximum measurement for the tree 
height (numbers rounded to 3 sig figs)?

A) 153 ft

B) 155 ft

C) 187 ft

D) 189 ft

meet . ps Ics 357

X = 170 ft
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You are tasked with measuring the height of a tree and you get the 
measurement as 170 ft tall. You later realized that your measurement tools are 
somewhat faulty, up to a relative error of 10%. What is the minimum height of 
the tree (numbers rounded to 3 sig figs) ?

A) 153 ft

B) 155 ft

C) 187 ft

D) 189 ft

I = 170ft

er = O . I

I = x ( Iter ) =

154,51
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Significant digits
Significant figures of a number are digits that carry meaningful 
information. They are digits beginning to the leftmost nonzero digit 
and ending with the rightmost “correct” digit, including final zeros 
that are exact.

The number 3.14159 has _____ significant digits.

The number 0.00035 has _____ significant digits.

The number 0.000350 has ______ significant digits.

Accurate to n significant digits means that you can trust a total of n
digits. Accurate digits is a measure of relative error.
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Suppose ! is the true value and "! the approximation. 

The number of significant digits tells us about how many positions of ! and "! agree.

"! has # significant figures of ! if ! − "! has zeros in the first % decimal places counting 
from the leftmost nonzero (leading) digit of !, followed by a digit from 0 to 4.

Example:
! = 5.1 *%+ "! = 5

! = 0.51 *%+ "! = 0.5
! = 5 *%+ "! = 4.992
! = 5 *%+ "! = 4.996
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Suppose ! is the true value and "! the approximation. 

The number of significant digits tells us about how many positions of ! and "! agree.

"! has # significant figures of ! if ! − "! has zeros in the first % decimal places counting 
from the leftmost nonzero (leading) digit of !, followed by a digit from 0 to 4.

Example:
! = 3.141592653

'
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2.653×10
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8=3.14159×10
X-8=0.000002653

¥ -
6 Sig. figs

1=3.1415 ×

-1=0.880892653
→ 0.92653×0

"

is -42eros-5sigsfi.gs⇒
1=3.1416 X - I =

0.000007347=0.7347×0
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Suppose ! is the true value and "! the approximation. 

The number of significant digits tells us about how many positions of ! and "! agree.

"! has # significant figures of ! if ! − "! has zeros in the first % decimal places counting 
from the leftmost nonzero (leading) digit of !, followed by a digit from 0 to 4.

Example:
! = 3.141592653

q
whathiaainsIIdq.fr ?

op

2.653×10-6×10

P

mmIs

3.14159×10
X-i-O.rs?653-Gsigfigs

p

1=3.1415 × -1=0.888892653→
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Accurate to n significant digits means that you can trust a total of n
digits. Accurate digits is a measure of relative error.

Relative error:    !""#" = %&'()* +%(,,-.'
%&'()*

≤ 10+234

5 is the number of accurate significant digits

Hence if rtof = to
-2

we need at least

n =3 Sig figs .
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After rounding, the resulting number has 5 accurate digits. What is the tightest 
estimate of the upper bound on my relative error?

A) 10%

B) 10'%

C) 10)

D) 10')

er f 10-5
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Sources of Error

Main source of errors in numerical computation:

� Rounding error: occurs when digits in a decimal 
point (1/3 = 0.3333...) are lost (0.3333) due to a limit 
on the memory available for storing one numerical 
value. 

� Truncation error: occurs when discrete values are 
used to approximate a mathematical expression (eg. the 
approximation sin $ ≈ $ for small angles $)



Floating point representation



(Unsigned) Fixed-point representation
The numbers are stored with a fixed number of bits for the integer part 
and a fixed number of bits for the fractional part.

Suppose we have 8 bits to store a real number, where 5 bits store the 
integer part and 3 bits store the fractional part:

2"2#2$2%2& 2'%2'$2'#
1 0 1 1 1.0 1 1 $

Smallest number:

Largest number:
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(Unsigned) Fixed-point representation
Suppose we have 64 bits to store a real number, where 32 bits store the 
integer part and 32 bits store the fractional part:

!"# …!%!#!&. (#(%(" …("% % = *
+,&

"#
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(Unsigned) Fixed-point representation
Range: difference between the largest and smallest numbers possible. 

More bits for the integer part ⟶ increase range

Precision: smallest possible difference between any two numbers
More bits  for the fractional part ⟶ increase precision

Wherever we put the binary point, there is a trade-off between  the 
amount of range and precision. It can be hard to decide how much 
you need of each!
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Floating-point numbers
A floating-point number can represent numbers of different order of 
magnitude (very large and very small) with the same number of fixed bits.

In general, in the binary system, a floating number can be expressed as

! = ± $ × 2'
$ is the significand, normally a fractional value in the range [1.0,2.0)

. is the exponent
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Floating-point numbers

Numerical Form:

! = ±$ × 2' = ±(). (+(,(- …(/× 2'

(0 ∈ 0,1
Exponent range: 5 ∈ 6,7
Precision: p = 9 + 1

Fractional part of significand
(9 bits)

D
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“Floating” the binary point

10111 # = 1×16 + 0×8 + 1×4 + 1×2 + 1×1 = 23 ,-

1011.1 # = 1×8 + 0×4 + 1×2 + 1×1 + 1×12 = 11.5 ,-

Move “binary point” to the left by one bit position: Divide the decimal 
number by 2
Move “binary point” to the right by one bit position: Multiply the decimal 
number by 2

= 1011.1 #× 2,= 23 ,-

101.11 # = 1×4 + 0×2 + 1×1 + 1×12 + 1×
1
4 = 5.75 ,-

= 1011.1 #× 21,= 5.75 ,-



Converting floating points

Convert (39.6875)*+ = 100111.1011 / into floating point 
representation

-
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Normalized floating-point numbers
Normalized floating point numbers are expressed as 

! = ± 1. &'&(&) …&+× 2. = ± 1. / × 2.

where / is the fractional part of the significand, 0 is the exponent and 
&1 ∈ 0,1 .
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Iclicker question
Determine the normalized floating point representation 
1. # × 2& of the decimal number ' = 47.125 (# in binary 
representation and & in decimal)

A) 1.01110001 / × 20
B) 1.01110001 / × 22
C) 1.01111001 / × 20
D) 1.01111001 / × 22
0



• Exponent range:

• Precision:

• Smallest positive normalized FP number:  

• Largest positive normalized FP number: 

Normalized floating-point numbers

! = ± $ × 2'= ± 1. *+*,*- …*/× 2' = ± 1. 0 × 2'
A
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Normalized floating point number scale

0
+∞−∞

- overflow

#✓ to infinity
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Floating-point numbers: Simple example
A ”toy” number system can be represented as ! = ±1. &'&(×2+
for , ∈ [−4,4] and &3 ∈ {0,1}.

M =
O m -

- 2 M =3 M=4
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Floating-point numbers: Simple example
A ”toy” number system can be represented as ! = ±1. &'&(×2+
for , ∈ [−4,4] and &3 ∈ {0,1}.
1.00 ( ×27 = 1
1.01 ( ×27 = 1.25
1.10 ( ×27 = 1.5
1.11 ( ×27 = 1.75

1.00 ( ×2:' = 0.5
1.01 ( ×2:' = 0.625
1.10 ( ×2:' = 0.75
1.11 ( ×2:' = 0.875

1.00 ( ×2' = 2
1.01 ( ×2' = 2.5
1.10 ( ×2' = 3.0
1.11 ( ×2' = 3.5

1.00 ( ×2( = 4.0
1.01 ( ×2( = 5.0
1.10 ( ×2( = 6.0
1.11 ( ×2( = 7.0

1.00 ( ×2> = 8.0
1.01 ( ×2> = 10.0
1.10 ( ×2> = 12.0
1.11 ( ×2> = 14.0

1.00 ( ×2? = 16.0
1.01 ( ×2? = 20.0
1.10 ( ×2? = 24.0
1.11 ( ×2? = 28.0

1.00 ( ×2:( = 0.25
1.01 ( ×2:( = 0.3125
1.10 ( ×2:( = 0.375
1.11 ( ×2:( = 0.4375

1.00 ( ×2:> = 0.125
1.01 ( ×2:> = 0.15625
1.10 ( ×2:> = 0.1875
1.11 ( ×2:> = 0.21875

1.00 ( ×2:? = 0.0625
1.01 ( ×2:? = 0.078125
1.10 ( ×2:? = 0.09375
1.11 ( ×2:? = 0.109375

Same steps are performed to obtain the negative numbers. For simplicity, we 
will show only the positive numbers in this example.

-
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! = ±1. &'&(×2+ for , ∈ [−4,4] and &3 ∈ {0,1}

• Smallest normalized positive number: 

• Largest normalized positive number:

←

not uniform distribution !
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! = ±1. &'&(×2+ for , ∈ [−4,4] and &3 ∈ {0,1}

Machine epsilon
• Machine epsilon (7+): is defined as the distance (gap) between 1 and the 

next largest floating point number.
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Machine numbers: how floating point 
numbers are stored?



Floating-point number representation
What do we need to store when representing floating point 
numbers in a computer?

! = ± 1. & × 2)

! = ± * +
sign exponent significand

Initially, different floating-point representations were  used in computers, 
generating inconsistent program behavior across different machines.

Around 1980s, computer manufacturers started adopting a standard 
representation for floating-point number: IEEE (Institute of Electrical and 
Electronics Engineers) 754 Standard.



Floating-point number representation
Numerical form:

! = ± 1. & × 2)

Representation in memory:

! =
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Precisions:

IEEE-754 Single precision (32 bits):

IEEE-754 Double precision (64 bits):

! =

! =

C f

8 bits 23 bits

I bit bcbabs -  -  
-

. bas

C f

I 11 bits 52bits
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.

b5③



Single a 8 bits to

store "
a

' '

400000001=07
(I I I I I I I 1)2=255

Icidcaassaveoraer.SIf Mt shifts 254

→ shift = 127

f-l26SMfl27J MEEN ]

9 T


	Lecture4-Sept5
	Lecture4-Sept5-p2

