
Errors

Scientific Notation

In scientific notation, a number can be expressed in the form

! = ± $ × 10(

where $ is a coefficient in the range 1 ≤ $ < 10 and + is the exponent.

1165.7 =

0.0004728 =

w
1.1657×103

Error in Numerical Methods

� Every result we compute in Numerical Methods contain errors!
� We always have them… so our job? Reduce the impact of the

errors
� How can we model the error?

x = true Cexact) I = approx

eat Ix - It

er

--lx
1×1

� Absolute errors can be misleading, depending on the magnitude
of the true value !.

� Example:

� Relative error is independent of magnitude!

Tf

DX = 10

"

if
Hos

→lost
to

" V

ii
)x

.

- to
'

- to 't
-

You are tasked with measuring the height of a tree which is known to be exactly
170 ft tall. You later realized that your measurement tools are somewhat faulty,
up to a relative error of 10%. What is the maximum measurement for the tree
height (numbers rounded to 3 sig figs)?

A) 153 ft

B) 155 ft

C) 187 ft

D) 189 ft

meet . ps Ics 357

X = 170 ft

er = O
. I

er = I → er HI = Ix - I 1

I = x (It er)

=
170 (I .

I) = 187 ft

You are tasked with measuring the height of a tree and you get the
measurement as 170 ft tall. You later realized that your measurement tools are
somewhat faulty, up to a relative error of 10%. What is the minimum height of
the tree (numbers rounded to 3 sig figs) ?

A) 153 ft

B) 155 ft

C) 187 ft

D) 189 ft

I = 170ft

er = O . I

I = x (Iter) =

154,51
^ ✓ 1155ft
⇒ ,

¥
× =

×

\
ing = 188.8
O -9 l8③

Significant digits
Significant figures of a number are digits that carry meaningful
information. They are digits beginning to the leftmost nonzero digit
and ending with the rightmost “correct” digit, including final zeros
that are exact.

The number 3.14159 has _____ significant digits.

The number 0.00035 has _____ significant digits.

The number 0.000350 has ______ significant digits.

Accurate to n significant digits means that you can trust a total of n
digits. Accurate digits is a measure of relative error.

.

6
2

3

Suppose ! is the true value and "! the approximation.

The number of significant digits tells us about how many positions of ! and "! agree.

"! has # significant figures of ! if ! − "! has zeros in the first % decimal places counting
from the leftmost nonzero (leading) digit of !, followed by a digit from 0 to 4.

Example:
! = 5.1 *%+ "! = 5

! = 0.51 *%+ "! = 0.5
! = 5 *%+ "! = 4.992
! = 5 *%+ "! = 4.996

Ti

5. I - 5 =
0

. I → I sigfg

0951-
0.5 =107¥→ I Sig fig⑤-4.992=0.008→ 25dg fig

If
.

5- 4-996 = 0.004 → 3 sigfigw

Suppose ! is the true value and "! the approximation.

The number of significant digits tells us about how many positions of ! and "! agree.

"! has # significant figures of ! if ! − "! has zeros in the first % decimal places counting
from the leftmost nonzero (leading) digit of !, followed by a digit from 0 to 4.

Example:
! = 3.141592653

'

-

✓
2.653×10

"

A °
mm

8=3.14159×10
X-8=0.000002653

¥ -
6 Sig. figs

1=3.1415 ×

-1=0.880892653
→ 0.92653×0

"

is -42eros-5sigsfi.gs⇒
1=3.1416 X - I =

0.000007347=0.7347×0

fea=lx-Ilk5x

Suppose ! is the true value and "! the approximation.

The number of significant digits tells us about how many positions of ! and "! agree.

"! has # significant figures of ! if ! − "! has zeros in the first % decimal places counting
from the leftmost nonzero (leading) digit of !, followed by a digit from 0 to 4.

Example:
! = 3.141592653

q
whathiaainsIIdq.fr ?

op

2.653×10-6×10

P

mmIs

3.14159×10
X-i-O.rs?653-Gsigfigs

p

1=3.1415 × -1=0.888892653→

0.92653×0-4×10is -azeros-5sigsfi.gsis p
1=3.1416 X - I --

0.000007347=0.7347×0
xD

p

leam-ixts-q.IT#.sqsro

Accurate to n significant digits means that you can trust a total of n
digits. Accurate digits is a measure of relative error.

Relative error: !""#" = %&'()* +%(,,-.'
%&'()*

≤ 10+234

5 is the number of accurate significant digits

Hence if rtof = to
-2

we need at least

n =3 Sig figs .

c. ÷
"

iii.stereos

After rounding, the resulting number has 5 accurate digits. What is the tightest
estimate of the upper bound on my relative error?

A) 10%

B) 10'%

C) 10)

D) 10')

er f 10-5
"

→ qf 10-4

O

Sources of Error

Main source of errors in numerical computation:

� Rounding error: occurs when digits in a decimal
point (1/3 = 0.3333...) are lost (0.3333) due to a limit
on the memory available for storing one numerical
value.

� Truncation error: occurs when discrete values are
used to approximate a mathematical expression (eg. the
approximation sin $ ≈ $ for small angles $)

Floating point representation

(Unsigned) Fixed-point representation
The numbers are stored with a fixed number of bits for the integer part
and a fixed number of bits for the fractional part.

Suppose we have 8 bits to store a real number, where 5 bits store the
integer part and 3 bits store the fractional part:

2"2#2$2%2& 2'%2'$2'#
1 0 1 1 1.0 1 1 $

Smallest number:

Largest number:

#j875

tithes

ri Yr "
→

(00000
.

001) a
= 2

-
- ④125 !

(11111 . Ill)z =
(31-875)

co

(Unsigned) Fixed-point representation
Suppose we have 64 bits to store a real number, where 32 bits store the
integer part and 32 bits store the fractional part:

!"# …!%!#!&. (#(%(" …("% % = *
+,&

"#
!+ 2+ +*

+,#

"%
(+ 2/+

= !"#× 2"#+!"&× 2"&+⋯+ !&× 2&+(#× 2/#+(%× 2%+⋯+ ("%× 2/"%

0 ∞

:
f-

'

f- 2,2-3 12-32
-

32
- 10

smallest : OLEO . 000--0012 =
2 new

32 bits

largest .

. (Ill
- - . it . Ill

- . . 11) E 109

#
I I

10-10 109

(Unsigned) Fixed-point representation
Range: difference between the largest and smallest numbers possible.

More bits for the integer part ⟶ increase range

Precision: smallest possible difference between any two numbers
More bits for the fractional part ⟶ increase precision

Wherever we put the binary point, there is a trade-off between the
amount of range and precision. It can be hard to decide how much
you need of each!

"#"$"%. '$'#'(# "$"%. '$'#'(') #OR

Floating-point numbers
A floating-point number can represent numbers of different order of
magnitude (very large and very small) with the same number of fixed bits.

In general, in the binary system, a floating number can be expressed as

! = ± $ × 2'
$ is the significand, normally a fractional value in the range [1.0,2.0)

. is the exponent

DD O

Floating-point numbers

Numerical Form:

! = ±$ × 2' = ±(). (+(,(- …(/× 2'

(0 ∈ 0,1
Exponent range: 5 ∈ 6,7
Precision: p = 9 + 1

Fractional part of significand
(9 bits)

D

13¥Hot bits in signify

“Floating” the binary point

10111 # = 1×16 + 0×8 + 1×4 + 1×2 + 1×1 = 23 ,-

1011.1 # = 1×8 + 0×4 + 1×2 + 1×1 + 1×12 = 11.5 ,-

Move “binary point” to the left by one bit position: Divide the decimal
number by 2
Move “binary point” to the right by one bit position: Multiply the decimal
number by 2

= 1011.1 #× 2,= 23 ,-

101.11 # = 1×4 + 0×2 + 1×1 + 1×12 + 1×
1
4 = 5.75 ,-

= 1011.1 #× 21,= 5.75 ,-

Converting floating points

Convert (39.6875)*+ = 100111.1011 / into floating point
representation

-

i.ooiiiionx2.CI

Normalized floating-point numbers
Normalized floating point numbers are expressed as

! = ± 1. &'&(&) …&+× 2. = ± 1. / × 2.

where / is the fractional part of the significand, 0 is the exponent and
&1 ∈ 0,1 .

µ
fixed asare

• Fix the leading bit to # hidden bit

representation
• range ME I 40] → gaius bitt

tower
' upper

- ofpTec=htTfn is the member of bits

- in the fractional part
bits

"

stored
"

- n

Iclicker question
Determine the normalized floating point representation
1. # × 2& of the decimal number ' = 47.125 (# in binary
representation and & in decimal)

A) 1.01110001 / × 20
B) 1.01110001 / × 22
C) 1.01111001 / × 20
D) 1.01111001 / × 22
0

• Exponent range:

• Precision:

• Smallest positive normalized FP number:

• Largest positive normalized FP number:

Normalized floating-point numbers

! = ± $ × 2'= ± 1. *+*,*- …*/× 2' = ± 1. 0 × 2'
A

ME [L
,

U] f

p - htt n :# bits fractional

A- I .OO0;x£fUFL=2
X = I.N.nx2°→/OFL=2"(l-2

Normalized floating point number scale

0
+∞−∞

- overflow

#✓ to infinity

undertows
← . to zero

→ ←
as

I ⑨ A I I l

OFL - UFL VFL
OFL

- -normalized normalized

FP members FP members

Floating-point numbers: Simple example
A ”toy” number system can be represented as ! = ±1. &'&(×2+
for , ∈ [−4,4] and &3 ∈ {0,1}.

M =
O m -

- 2 M =3 M=4

÷÷÷÷÷t÷y
1. 11×21

m= -
I - 2 - 3 - 4

Floating-point numbers: Simple example
A ”toy” number system can be represented as ! = ±1. &'&(×2+
for , ∈ [−4,4] and &3 ∈ {0,1}.
1.00 (×27 = 1
1.01 (×27 = 1.25
1.10 (×27 = 1.5
1.11 (×27 = 1.75

1.00 (×2:' = 0.5
1.01 (×2:' = 0.625
1.10 (×2:' = 0.75
1.11 (×2:' = 0.875

1.00 (×2' = 2
1.01 (×2' = 2.5
1.10 (×2' = 3.0
1.11 (×2' = 3.5

1.00 (×2(= 4.0
1.01 (×2(= 5.0
1.10 (×2(= 6.0
1.11 (×2(= 7.0

1.00 (×2> = 8.0
1.01 (×2> = 10.0
1.10 (×2> = 12.0
1.11 (×2> = 14.0

1.00 (×2? = 16.0
1.01 (×2? = 20.0
1.10 (×2? = 24.0
1.11 (×2? = 28.0

1.00 (×2:(= 0.25
1.01 (×2:(= 0.3125
1.10 (×2:(= 0.375
1.11 (×2:(= 0.4375

1.00 (×2:> = 0.125
1.01 (×2:> = 0.15625
1.10 (×2:> = 0.1875
1.11 (×2:> = 0.21875

1.00 (×2:? = 0.0625
1.01 (×2:? = 0.078125
1.10 (×2:? = 0.09375
1.11 (×2:? = 0.109375

Same steps are performed to obtain the negative numbers. For simplicity, we
will show only the positive numbers in this example.

-
.

! = ±1. &'&(×2+ for , ∈ [−4,4] and &3 ∈ {0,1}

• Smallest normalized positive number:

• Largest normalized positive number:

←

not uniform distribution !

\

⑤TVMME I -4,4]
-

precision : p = ht I = 3

! = ±1. &'&(×2+ for , ∈ [−4,4] and &3 ∈ {0,1}

Machine epsilon
• Machine epsilon (7+): is defined as the distance (gap) between 1 and the

next largest floating point number.

Emi

\ \

Em = 0.25

One i I
. OOO-._.0 I

n bits

: t
.

+ zo } Q0n0÷j0x
I

2-
n

x I

Machine numbers: how floating point
numbers are stored?

Floating-point number representation
What do we need to store when representing floating point
numbers in a computer?

! = ± 1. & × 2)

! = ± * +
sign exponent significand

Initially, different floating-point representations were used in computers,
generating inconsistent program behavior across different machines.

Around 1980s, computer manufacturers started adopting a standard
representation for floating-point number: IEEE (Institute of Electrical and
Electronics Engineers) 754 Standard.

Floating-point number representation
Numerical form:

! = ± 1. & × 2)

Representation in memory:

! =

✓ FEEL,
u]

b

signed
=

I C f
STORES THE

C = Mt Shift SHIFTED EXPONENT

&ngigneo

\
signed

"

C
" (unsigned) ,

INSTEAD

OF ACTUAL EXPONENT
"

m
"

Precisions:

IEEE-754 Single precision (32 bits):

IEEE-754 Double precision (64 bits):

! =

! =

C f

8 bits 23 bits

I bit bcbabs - -
-

. bas

C f

I 11 bits 52bits

Ibif bibbs - - - -
.

b5③

Single a 8 bits to

store "
a

' '

400000001=07
(I I I I I I I 1)2=255

Icidcaassaveoraer.SIf Mt shifts 254

→ shift = 127

f-l26SMfl27J MEEN]

9 T

	Lecture4-Sept5
	Lecture4-Sept5-p2

