Machine numbers: how floating point numbers are stored?

Floating-point number representation

What do we need to store when representing floating point numbers in a computer?

$$
x= \pm 1 . f \times 2^{m}
$$

Initially, different floating-point representations were used in computers, generating inconsistent program behavior across different machines.

Around 1980s, computer manufacturers started adopting a standard representation for floating-point number: IEEE (Institute of Electrical and Electronics Engineers) 754 Standard.

Floating-point number representation

Numerical form:

$$
x= \pm 1 . f \times 2^{m}
$$

Representation in memory:

$$
x=\begin{array}{|l|l|}
\hline & \\
\hline
\end{array}
$$

Precisions:

$$
x= \pm 1 . f \times 2^{m}
$$

IEEE-754 Single precision (32 bits): $\quad m \in[L, U]$

$$
\begin{aligned}
& \text { IEEE-754 Single precision (} 32 \text { bits): } \\
& 8 \text { bits } \quad 23 \text { bits } \leqslant \text { signed }
\end{aligned}
$$

$$
x=\begin{array}{|l|l|}
\hline \pm & c=m+\text { shift } \\
\mid \text { bit } \prod_{\text {unsigned }} & f \\
\hline
\end{array}
$$

IEEE-754 Double precision (64 bits):

$$
x=\begin{array}{|c|c|}
\hline \pm & c=m+\text { shift } \\
\hline \text { Unit } 11 \text { bits } & f 2 \text { bits } \\
\hline
\end{array}
$$

Special Values:

$$
s=1 \Rightarrow \text { negative }
$$

$$
s=0 引 \text { positive }
$$

$$
x=(-1)^{s} 1 . f \times 2^{m}=\begin{array}{|l|l|l|}
\hline s & c & f \\
\hline
\end{array}
$$

1) Zero:

$$
x=\frac{\begin{array}{c}
\frac{x / 11}{} / 23 / 52 \\
\text { all zeros } 000000.000 \\
\text { all zeros }
\end{array}}{\text { all } 000}
$$

2) Infinity: $+\infty(s=0)$ and $-\infty(s=1)$

$$
x=\begin{array}{c|c|c|}
\begin{array}{c}
t \\
\hline
\end{array} 111 \ldots-11 & 000 \cdots \cdots 000 \\
\hline \text { all ones } & \text { all zeros }
\end{array}
$$

3) NaN : (results from operations with undefined results)

$$
x=\frac{ \pm 111 \ldots 11 \text { anything but all ceros }}{\text { all ones }}
$$

allzeros in a but anything else in f

IEEE-754 Single Precision (32-bit)

$$
x=(-1)^{s} 1 . f \times 2^{m}
$$

$C=(00 \ldots 0)_{2} \longrightarrow$ reserved $\xrightarrow{(23-\text { bit })} C=(0)_{10}$
$C=(11 \ldots 1)_{2} \longrightarrow$ Nan or $\infty \longrightarrow C=(255)_{10}$

$$
\begin{aligned}
1 \leqslant c \leqslant 254 \longrightarrow & 1 \leqslant m+127 \leqslant 254 \\
& -126 \leqslant m \leqslant 127
\end{aligned}
$$

range of
exponent $\Rightarrow m \in[-126,127]$

IEEE-754 Single Precision (32-bit)

$$
x=(-1)^{s} 1 . f \times 2^{m}
$$

Example: Represent the number $x=-67.125$ using IEEE SinglePrecision Standard

$$
67.125=(1000011.001)_{2}=(1.000011001)_{2} \times 2^{6}
$$

$m=6 \longrightarrow c=m+127=(133)_{10}=(10000101)_{2}$

IEEE-754 Double Precision (64-bit)

$$
x=(-1)^{s} 1 . f \times 2^{m}
$$

$$
\begin{aligned}
& C=\left(\begin{array}{r}
000 \ldots \mathrm{OO})_{2}=(0)_{10} \longrightarrow \text { reserved for } \\
\text { zero }
\end{array}\right. \\
& c=(111 . .11)_{2}=(2047)_{10} \rightarrow \mathrm{NaN} \text { and } \infty \\
& 1 \leqslant c \leqslant 2046 \rightarrow 1 \leqslant m+1023 \leqslant 2046 \\
& m \in[-1022,1023] \\
& -1022 \leqslant m \leqslant 1023
\end{aligned}
$$

$m \in[-1022,1023] \quad m=52 \longrightarrow p=53$ IEEE-754 Double Precision (64-bit)

$$
x=(-1)^{s} 1 . f \times 2^{m}=\begin{array}{|l|l|l|}
\hline s & c & f \\
\hline
\end{array} c=m+1023
$$

- Machine epsilon $\left(\epsilon_{m}\right)$: is defined as the distance (gap) between 1 and the next largest floating point number.

$$
\begin{aligned}
& \text { - Smallest positive normalized FP number: } \\
& \text { UFL }=2^{L} \rightarrow U F L=2^{-1022} \approx 2.2 \times 10^{-308}
\end{aligned}
$$

$$
\begin{aligned}
& \text { - Largest positive normalized FP number: } \\
& \text { OF }=2^{+1}\left(1-2^{-P}\right)=2^{1024}\left(1-2^{-53}\right) \approx 10^{308}
\end{aligned}
$$

Can we represent \# smaller than UEL

$$
\begin{aligned}
& x=1 . f \times 2^{m} \\
& x=0 . f_{A} \times 2^{L}
\end{aligned}
$$

denormalized / subnormal Let's make
$c=(00 \ldots 00)_{2}$ all zeros $(f)=$ any thins but zeros , used to "indicate" that exponent is $m=L$ (and NOT to evaluate m)

Subnormal (or denormalized) numbers

- Noticeable gap around zero, present in any floating system, due to normalization
- Relax the requirement of normalization, and allow the leading digit to be zero, only when the exponent is at its minimum $(m=L)$
- Computations with subnormal numbers are often slow.

Representation in memory (another special case):

$$
\begin{aligned}
& \text { allzeros anything but } \\
& x=\square|000 \ldots 00| \text { eros } \\
& s \rightarrow 8 / \|_{R} \\
& { }_{s}, 23 / 52_{a}
\end{aligned}
$$

Numerical value:

$$
X= \pm 0 . f \times 2^{L} \left\lvert\, \begin{aligned}
& m \in[-126,127] \text { single } \\
& m \in[-1022,1023] \text { double }
\end{aligned}\right.
$$

Subnormal (or denormalized) numbers
IEEE-754 Single precision (32 bits) ${ }_{23}$

$$
\begin{aligned}
& c=(00000000)_{2}=0 \quad\left(\begin{array}{l}
2 \\
\text { smallest } \\
\text { subnormal }
\end{array}:(0.000 .001) \times 2^{-126}=2^{-23} \times 2^{-12} 2^{-12}\right. \\
& 2_{n=23}^{-12} \\
& \approx 1.4 \times 10^{-45}
\end{aligned}
$$

IEEE-754 Double precision (64 bits):

$$
c=(00000000000)_{2}=0
$$

$\begin{aligned} & \text { smallest }:(0.0 .000 \cdots 001) \\ & \text { sulonormal } \begin{aligned} &\left(02^{-1022}\right.=2^{-52} 2^{-1022} \\ & 2^{-12}\end{aligned} \\ & 2^{-52} \approx 4.9 \times 10^{-324}\end{aligned}$

IEEE-754 Double Precision

Summary for Single Precision

$$
x=(-1)^{s} 1 . f \times 2^{m}=\begin{array}{|l|l|l|}
\hline s & c & f
\end{array} \quad m=c-127
$$

Stored binary exponent (c)	Significand fraction (f)	value
00000000	$0000 \ldots 0000$	zero
00000000	any $f \neq 0$	$(-1)^{s} 0 . f \times 2^{\mathbf{- 1 2 6}}$
00000001	any f	$(-1)^{s} 1 . f \times 2^{\mathbf{1 2 6}}$
\vdots	\vdots	\vdots
11111110	any f	$(-1)^{s} 1 . f \times 2^{\mathbf{1 2 7}}$
11111111	any $f \neq 0$	NaN
11111111	$0000 \ldots 0000$	infinity

What is the equivalent decimal number?

00000000000000000000000000000000
11111111100000000000000000000000
01111111111111111110000111111111

00000000011110000000000000000000
00111111100000000000000000000000

Iclicker question

$$
p=n+1=4
$$

A number system can be represented as $x= \pm 1 . b_{1} b_{2} b_{3} \times 2^{m}$ for $m \in[-5,5]$ and $b_{i} \in\{0,1\}$.

$$
1.000 \times 2^{-5}=2^{-5}
$$

1) What is the smallest positive normalized $F P$ number:
a) 0.0625
b) 0.09375
c) 0.03125
d) 0.046875
e) 0.125
2) What is the largest positive normalized FP number:
a) 28
b) 60
c) 56
d) 32
1.111×2^{5} or $2^{u+1}\left(1-2^{-p}\right)=2^{6}\left(1-2^{-4}\right)$
3) How many additional numbers (positive and negative) can be represented when using subnormal representation?
a) 7
b) 14
c) 3
d) 6
e) 16

$$
0.001 \times 2^{-5}
$$

0.100
4) What is the smallest positive subnormal number?
.010
a) 0.00390625
b) 0.00195313
5) Determine machine epsilon
c) 0.03125
.011
.101
a) 0.0625
b) 0.00390625
c) 0.0117188
d) 0.125
-110
.111

A number system can be represented as $x= \pm 1 . b_{1} b_{2} b_{3} b_{4} \times 2^{m}$ for $m \in[-6,6]$ and $b_{i} \in\{0,1\}$.

$$
n=4 \quad p=5
$$

1) Let's say you want to represent the decimal number 19.625 using the binary number system above. Can you represent this number exactly?

$$
\begin{gathered}
(19.625)_{10}=(10011.101)_{2}=1.0011101 \times 2^{4} \\
1.0011 \times 2^{4} \sqrt{\text { integer range } \longrightarrow \text { until } 2^{1}} \\
\text { double precision } \longrightarrow 2^{53}
\end{gathered}
$$

2) What is the range of integer numbers that yeunan represent exactly using this binary system?

$$
\begin{aligned}
& (1)_{10}=(1)_{2}=1.0000 \times 2^{0} \\
& \text { (2) })_{10}=(10)_{2}=1.0000 \times 2^{1} \\
& (3)_{10}=(1,1)_{2}=1.1000 \times 2^{1} \\
& (15)_{10}=(1111.0)_{2}=1.1110 \times 2^{3}
\end{aligned}
$$

$$
\begin{gathered}
(111111)_{2}=(31)_{10}=1.1111 \times 2^{4} \\
(32)_{10}=1.0000 \times 2^{5} \\
1.0001 \times 2^{5}=34 \\
\text { cannot represent }(33)_{10}!!
\end{gathered}
$$

Rounding errors

Example

Show demo: "Waiting for 1 ".
Determine the double-precision machine representation for 0.1
$0.1=(0.000110011 \overline{0011} \ldots)_{2}=(1.100110011 \ldots)_{2} \times 2^{-4}$

$$
m=-4 \longrightarrow c=m+1023 \longrightarrow c=(1019)_{10}
$$

$$
f=\underbrace{100110011001 \cdots 1001}_{52} \underset{\text { iGNORE }}{1001 \cdots}
$$

Machine floating point number

- Not all real numbers can be exactly represented as a machine floating-point number.
- Consider a real number in the normalized floating-point form:

$$
x=41 . b_{1} b_{2} b_{3} \ldots b_{n} \ldots \times 2^{m}
$$

- The real number x will be approximated by either x_{-}or x_{+}, the nearest two machine floating point numbers

$$
x_{-}=1 \cdot b_{1} b_{2} b_{3} \ldots b_{n} \times 2^{m}
$$

$$
x_{t}=\underbrace{1 . b_{1} b_{2} b_{3} \cdots b_{n} \times 2^{m}}_{-n}+\underbrace{0.000 \ldots 01}_{0001 \times 2^{m}}
$$

Exact number: $x=1 . b_{1} b_{2} b_{3} \ldots b_{n} \ldots \times 2^{m}$

$$
\begin{aligned}
& x_{-}=1 . b_{1} b_{2} b_{3} \ldots b_{n} \times 2^{m} \\
& x_{+}=1 . b_{1} b_{2} b_{3} \ldots b_{n} \times 2^{m}+\underbrace{0.000 \ldots 01}_{\epsilon_{m}} \times 2^{m}
\end{aligned}
$$

Gap between x_{+}and $x_{-}:\left|x_{+}-x_{-}\right|=\epsilon_{m} \times 2^{m}$
Examples for single precision
x_{+}and x_{-}of the form $q \times 2^{4}: \longrightarrow 2^{4} \times 2^{-23} \sim 10^{-6}$
x_{+}and x_{-}of the form $q \times 2^{20}: \longrightarrow 2^{20} \times 2^{-23} \sim 0.125$
x_{+}and x_{-}of the form $q \times 2^{60}: \leadsto 2^{60} \times 2^{-23}=2^{37} \sim W^{11}$
The interval between successive floating point numbers is not uniform: the interval is smaller as the magnitude of the numbers themselves is smaller, and it is bigger as the numbers get bigger.

Gap between two successive machine floating point numbers

A "toy" number system can be represented as $x= \pm 1 . b_{1} b_{2} \times 2^{m}$ for $m \in[-4,4]$ and $b_{i} \in\{0,1\}$.
$(1.00)_{2} \times 2^{0}=1$
$(1.00)_{2} \times 2^{1}=2$
$(1.00)_{2} \times 2^{2}=4.0$
$(1.01)_{2} \times 2^{0}=1.25$
$(1.01)_{2} \times 2^{1}=2.5$
$(1.01)_{2} \times 2^{2}=5.0$
$(1.10)_{2} \times 2^{0}=1.5$
$(1.10)_{2} \times 2^{1}=3.0$
$(1.10)_{2} \times 2^{2}=6.0$
$(1.11)_{2} \times 2^{0}=1.75$
$(1.11)_{2} \times 2^{1}=3.5$
$(1.11)_{2} \times 2^{2}=7.0$

$(1.00)_{2} \times 2^{3}=8.0$	$(1.00)_{2} \times 2^{4}=16.0$	$(1.00)_{2} \times 2^{-1}=0.5$
$(1.01)_{2} \times 2^{3}=10.0$	$(1.01)_{2} \times 2^{4}=20.0$	$(1.01)_{2} \times 2^{-1}=0.625$
$(1.10)_{2} \times 2^{3}=12.0$	$(1.10)_{2} \times 2^{4}=24.0$	$(1.10)_{2} \times 2^{-1}=0.75$
$(1.11)_{2} \times 2^{3}=14.0$	$(1.11)_{2} \times 2^{4}=28.0$	$(1.11)_{2} \times 2^{-1}=0.875$

$(1.00)_{2} \times 2^{-2}=0.25$
$(1.01)_{2} \times 2^{-2}=0.3125$
$(1.00)_{2} \times 2^{-3}=0.125$
$(1.00)_{2} \times 2^{-4}=0.0625$
$(1.10)_{2} \times 2^{-2}=0.375$
$(1.01)_{2} \times 2^{-3}=0.15625$
$(1.01)_{2} \times 2^{-4}=0.078125$
$(1.11)_{2} \times 2^{-2}=0.4375$
$(1.10)_{2} \times 2^{-3}=0.1875$
$(1.10)_{2} \times 2^{-4}=0.09375$
$(1.11)_{2} \times 2^{-2}=0.4375 \quad(1.11)_{2} \times 2^{-3}=0.21875 \quad(1.11)_{2} \times 2^{-4}=0.109375$

