
Rounding errors

Example
Show demo: “Waiting for 1”.
Determine the double-precision machine representation for 0.1

0.1 = 0.000110011 0011… & = 1.100110011… &×2)*

Machine floating point number
• Not all real numbers can be exactly represented as a machine floating-point

number.
• Consider a real number in the normalized floating-point form:

! = ±1. &'&(&) …&+ …× 2.
• The real number ! will be approximated by either !/ or !0, the nearest two

machine floating point numbers.

!!/ !00 +∞

!!" !#0 +∞

!" = 1. *+*,*- …*/× 22
! = 1. *+*,*- …*/ …× 22Exact number:

!# = 1. *+*,*- …*/× 22+ 0.000…01× 22
32

Gap between !# and !": !# − !" = 32 × 22

Examples for single precision:
!# and !" of the form 5 × 2"+6
!# and !" of the form 5 × 27:
!# and !" of the form 5 × 2,6:
!# and !" of the form 5 × 296:

The interval between successive floating point numbers is not uniform: the interval is smaller as the
magnitude of the numbers themselves is smaller, and it is bigger as the numbers get bigger.

KEES

Gap between two successive machine floating point numbers

A ”toy” number system can be represented as ! = ±1. &'&(×2+
for , ∈ [−4,4] and &3 ∈ {0,1}.
1.00 (×27 = 1
1.01 (×27 = 1.25
1.10 (×27 = 1.5
1.11 (×27 = 1.75

1.00 (×2:' = 0.5
1.01 (×2:' = 0.625
1.10 (×2:' = 0.75
1.11 (×2:' = 0.875

1.00 (×2' = 2
1.01 (×2' = 2.5
1.10 (×2' = 3.0
1.11 (×2' = 3.5

1.00 (×2(= 4.0
1.01 (×2(= 5.0
1.10 (×2(= 6.0
1.11 (×2(= 7.0

1.00 (×2> = 8.0
1.01 (×2> = 10.0
1.10 (×2> = 12.0
1.11 (×2> = 14.0

1.00 (×2? = 16.0
1.01 (×2? = 20.0
1.10 (×2? = 24.0
1.11 (×2? = 28.0

1.00 (×2:(= 0.25
1.01 (×2:(= 0.3125
1.10 (×2:(= 0.375
1.11 (×2:(= 0.4375

1.00 (×2:> = 0.125
1.01 (×2:> = 0.15625
1.10 (×2:> = 0.1875
1.11 (×2:> = 0.21875

1.00 (×2:? = 0.0625
1.01 (×2:? = 0.078125
1.10 (×2:? = 0.09375
1.11 (×2:? = 0.109375

Rounding
The process of replacing ! by a nearby machine number is called
rounding, and the error involved is called roundoff error.

Round to nearest:

!!" !#0 +∞!!# !"−∞

Round
towards
+∞

Round
towards
−∞

Round
towards
zero

Round
towards
zero

! is positive number ! is negative number

Round up (ceil)

Round down (floor)

Round by chopping:

* Tie-breaker .

I = film) = round la)
•default i round to

nearest
even

or other i round

away from
zero

round towards too round toward zero

fl (a) = At fl (a) = N -

round towards zero round towards - A

ft la) -

- n
-

floe) = At

* round towards closest FP
.

(down or up)

Rounding (roundoff) errors
Consider rounding by chopping:

• Absolute error:

• Relative error:

that - a fecal- atree
• A 0

N
,

N Nt

IF
Ifan) -self Int - N

-

I Enx2m

or Ifeca) -self Em×2m ↳ gap
between

Zfpnumbets
m

HetD#sln+-n=Emn=EnfImn⇐qe2)
-

a

er Relative error due

erff.fi?.?mzm-serEEmtoroundiugCgetFP
representation) is less

than machine epsilon .

Rounding (roundoff) errors

Single precision: Floating-point
math consistently introduces relative
errors of about 10#$. Hence, single
precision gives you about 7
(decimal) accurate digits.

%# %&

'% − %
|%| ≤ 2#,-≈ 1.2×10#$ '% − %

|%| ≤ 2#1,≈ 2.2×10#23

% = 1. 525,5- …57 …× 28

Double precision: Floating-point
math consistently introduces
relative errors of about 10#23.
Hence, double precision gives you
about 16 (decimal) accurate
digits.

ers 5×10

Er of40k ⇒ he - htt

Em
IT

< 5×10
- h

D

1-
D

Ruleofthumblf

er f Em

Single Precision ⇒ er f 2-
"

e 1.2×10
- t

f 5×10
- n

- h

Recall that ers 5×10 net (sglingskabureufishon
decimal digits of

accuracy)
A Even if we were to write

er S to
-

" "

→ logo ler)

flog !D-
n "

Y
-

- f - htt) e

n f I - logo ler) = I - logo I 1.2×10-7

1ncTf → so it does not ' quite give 8 decimal

digits of accuracy
!

Iclicker question
Assume you are working with IEEE single-precision numbers. Find the smallest
number ! that satisfies

2# + ! ≠ 2#

A) 2()*+,
B) 2()*..
C) 2(0.
D) 2()0
E) 2(#

in KW xta # X

gone? #*#
Xt

if acgap :

27A =
28

a else

28ta=hextFP
I

28 next FP

I
gap

gap .

- Emx8= 2-23×28=55 → a > 2-
' 5

Rutgers : qx2M t a f- qx2m → a > Emzm
mum -

N

Demo

5

A =D p= to

while C Atp) > a :

P -

- PA

print Cp)

Loop will terminate when atp = a

double precision : p = gap =Io;÷

105
=

to
"

Mathematical properties of FP operations
Not necessarily associative:
For some ! , #, $ the result below is possible:

! + # + $ ≠ ! + (# + $)

Not necessarily distributive:
For some ! , #, $ the result below is possible:

$! + # ≠ $! + $ #
Not necessarily cumulative:
Repeatedly adding a very small number to a large number may do
nothing Demo: FP-arithmetic

Floating point arithmetic
Consider a number system such that ! = ±1. &'&(&)×2,
for - ∈ [−4,4] and &4 ∈ {0,1}.

8 = 1.101 (×2'
& = 1.001 (×2'

Rough algorithm for addition and subtraction:
1. Bring both numbers onto a common exponent
2. Do “grade-school” operation
3. Round result

• Example 1: No rounding needed

①

10¥21
.

0110×22=1.011×5 ✓

Floating point arithmetic
Consider a number system such that ! = ±1. &'&(&)×2,
for - ∈ [−4,4] and &4 ∈ {0,1}.

8 = 1.101 (×29
& = 1.000 (×29

• Example 2: Require rounding

8 = 1.100 (×2'
& = 1.100 (×2:'

• Example 3:

.

①
-10.101820

=
1.0101×21Topping 1.010×2

' '

⑤ - 0.01100×22×2-1=0.01100×21
- 1.100×2

'

+ 0.01100×2
'

-

I.111×2
' C no rounding needed)

Floating point arithmetic
Consider a number system such that ! = ±1. &'&(&)&*×2-
for . ∈ [−4,4] and &5 ∈ {0,1}.

9 = 1.1011 (×2'
& = 1.1010 (×2'

• Example 4:

} numbersare
"

close
"

to

each other

C = A - b 1.1011×2'

-

1.1010×21
-

0.0001×2
'

-
A.?×2

'

normalize IT
machine choice

NOT 1.000×2
'

SIGNIFICANT Digits to
-

-

Cancellation
! = 1. !%!&!'!(!)!* …!, …×2/%
0 = 1. 0%0&0'0(0)0* …0, …×2/&

Suppose ! ≈ 0 and single precision (without loss of generality)

! = 1. !%!&!'!(!)!* …!&2!&%10!&(!&)!&*!&4 … ×2/

0 = 1. !%!&!'!(!)!* …!&2!&%110&(0&)0&*0&4 …×2/

Demo

µ:t÷÷:{
.

on

Hlb - a) = 0.00000001×2
'm

→ normalize
Catastrophic

- ntm
cancellation

fllb - a) 1.0000 . . .

.00×2- not significant bits Cspurious
n bits

zeros
!)

Example of cancellation:
Suppose A= 1.

loflasasat
. . .

x2 '

b =L.IO/Obsbsbt--.x2
'

Using machine where n=4 → a -1-1011×2
'

- 6=1.1010×2
'

-

1. 1011 As Asat - - -

X
2

'

A - b ⇒ ,

① 1.1010 be babe - - -x 2

-

0.0001×2
'

machine y
when done by

" hand

- 3

resulting I 1. C,CzGC4X2
with -

cancellation significant digits
1. 0000×2-3 from AsA6A7A8

-

not significant digits
⑦bsbobtbs

Cancellation
! = 1. !%!&!'!(!)!* …!, …×2/%
0 = 1. 0%0&0'0(0)0* …0, …×2/&

For example, assume single precision and 11 = 12 + 18 (without loss of
generality), i.e. ! ≫ 0

56(!) = 1. !%!&!'!(!)!* …!&&!&'×2/9%:

56(0) = 1. 0%0&0'0(0)0* …0&&0&'×2/

1. !%!&!'!(!)!* …!&&!&'×2/9%:
0.0000…0010%0&0'0(0)×2/9%:+

In this example, the result 56 ! + 0 only included 6 bits of precision from
56(0). Lost precision!

Loss of Significance

How can we avoid this loss of significance? For example, consider the
function ! " = "$ + 1 − 1

If we want to evaluate the function for values " near zero, there is a
potential loss of significance in the subtraction.

Let 's consider five -
decimal digit arithmetic and

evaluate that x = 10-3

f G) = 110¥ -
I = zero ! (since to

'
is smaller

than machine

epsilon Ems to
-5)

How can we obtain better results

and avoid cancellation ?

Loss of Significance

Re-write the function as ! " = $%
$%&'(' (no subtraction!)

Re - write the function to " eliminate
" subtraction of

similar numbers

far
.
. ret - I =D-D

= =

,
JEET t I

tho 't ;o÷ ,

-
- EI Koto. YEE's:' 'not:tm%:iEano⇒

Example:
If x = 0.3721448693 and y = 0.3720214371 what is the relative error in the computation of
(x − y) in a computer with five decimal digits of accuracy?

If
exact values

approximations using 5 decimal digits I -

- 0.37214

relative error due to rounding :

YT
- 0.37202

17-2,11=1.3×10-5
.

er: I @- y) -
Cnn - g) I I relative error of difference)

-

In - y I
- 2

= 0.0001234322 - 0.00012 e 3×10 → the error

er - due to the

0.0001234322 subtraction is
"

large
"

compared to the error
' akee to

rounding because of cancelation .

