Rounding errors

Example

Show demo: "Waiting for 1 ".
Determine the double-precision machine representation for 0.1
$0.1=(0.000110011 \overline{0011} \ldots)_{2}=(1.100110011 \ldots)_{2} \times 2^{-4}$

Machine floating point number

- Not all real numbers can be exactly represented as a machine floating-point number.
- Consider a real number in the normalized floating-point form:

$$
x= \pm 1 . b_{1} b_{2} b_{3} \ldots b_{n} \ldots \times 2^{m}
$$

- The real number x will be approximated by either x_{-}or x_{+}, the nearest two machine floating point numbers.

Exact number: $x=1 . b_{1} b_{2} b_{3} \ldots b_{n} \ldots \times 2^{m}$
$x_{-}=1 . b_{1} b_{2} b_{3} \ldots b_{n} \times 2^{m}$
$x_{+}=1 . b_{1} b_{2} b_{3} \ldots b_{n} \times 2^{m}+\underbrace{0.000 \ldots 01}_{\epsilon_{m}} \times 2^{m}$
Gap between x_{+}and $x_{-}:\left|x_{+}-x_{-}\right|=\epsilon_{m} \times 2^{m}$

Examples for single precision:
x_{+}and x_{-}of the form $q \times 2^{-10}$
x_{+}and x_{-}of the form $q \times 2^{4}$:
x_{+}and x_{-}of the form $q \times 2^{20}$:
x_{+}and x_{-}of the form $q \times 2^{60}$:
The interval between successive floating point numbers is not uniform: the interval is smaller as the magnitude of the numbers themselves is smaller, and it is bigger as the numbers get bigger.

Gap between two successive machine floating point numbers

A "toy" number system can be represented as $x= \pm 1 . b_{1} b_{2} \times 2^{m}$ for $m \in[-4,4]$ and $b_{i} \in\{0,1\}$.
$(1.00)_{2} \times 2^{0}=1$
$(1.00)_{2} \times 2^{1}=2$
$(1.00)_{2} \times 2^{2}=4.0$
$(1.01)_{2} \times 2^{0}=1.25$
$(1.01)_{2} \times 2^{1}=2.5$
$(1.01)_{2} \times 2^{2}=5.0$
$(1.10)_{2} \times 2^{0}=1.5$
$(1.10)_{2} \times 2^{1}=3.0$
$(1.10)_{2} \times 2^{2}=6.0$
$(1.11)_{2} \times 2^{0}=1.75$
$(1.11)_{2} \times 2^{1}=3.5$
$(1.11)_{2} \times 2^{2}=7.0$

$(1.00)_{2} \times 2^{3}=8.0$	$(1.00)_{2} \times 2^{4}=16.0$	$(1.00)_{2} \times 2^{-1}=0.5$
$(1.01)_{2} \times 2^{3}=10.0$	$(1.01)_{2} \times 2^{4}=20.0$	$(1.01)_{2} \times 2^{-1}=0.625$
$(1.10)_{2} \times 2^{3}=12.0$	$(1.10)_{2} \times 2^{4}=24.0$	$(1.10)_{2} \times 2^{-1}=0.75$
$(1.11)_{2} \times 2^{3}=14.0$	$(1.11)_{2} \times 2^{4}=28.0$	$(1.11)_{2} \times 2^{-1}=0.875$

$(1.00)_{2} \times 2^{-2}=0.25$
$(1.01)_{2} \times 2^{-2}=0.3125$
$(1.00)_{2} \times 2^{-3}=0.125$
$(1.00)_{2} \times 2^{-4}=0.0625$
$(1.10)_{2} \times 2^{-2}=0.375$
$(1.01)_{2} \times 2^{-3}=0.15625$
$(1.01)_{2} \times 2^{-4}=0.078125$
$(1.11)_{2} \times 2^{-2}=0.4375$
$(1.10)_{2} \times 2^{-3}=0.1875$
$(1.10)_{2} \times 2^{-4}=0.09375$
$(1.11)_{2} \times 2^{-2}=0.4375 \quad(1.11)_{2} \times 2^{-3}=0.21875 \quad(1.11)_{2} \times 2^{-4}=0.109375$

Rounding

* Tiebreak rule:
- default : round to nearest even
The process of replacing x by a nearby machine number is called rounding, and the error involved is called roundoff error.
- other: round away from

Round by chopping:

	x is positive number	x is negative number
Round up (ceil)	round towards $+\infty$ $f l(x)=x_{+}$	round toward zero $f l(x)=x-\infty$
Round down (floor)	round towards zero $f l(x)=x$	round towards - $f l(x)=x_{+}$

Round to nearest: round towards closest FP. (down or up)

Rounding (roundoff) errors
Consider rounding by chopping:

- Absolute error:

$$
|f f(x)-x| \leqslant\left|x_{+}-x_{-}\right|
$$

or $|f l(x)-x| \leqslant \epsilon_{m} \times 2^{m}$
\rightarrow gap between 2 IP numbers

- Relative error:

$$
\begin{aligned}
& \underbrace{\frac{|f l(x)-x|}{x}}_{e_{r}} \leqslant \frac{\left|x_{+}-x\right|}{x}=\frac{\epsilon_{m} \times 2^{m}}{x}=\frac{\epsilon_{m} \times 2^{m}}{q \times 2^{m}}(1 \leqslant q \leqslant 2) \\
& e_{r} \leqslant \frac{\epsilon_{m} \times 2^{m}}{1 . b_{1} b_{2} \ldots \times 2^{m}} \Rightarrow e_{r} \leqslant \epsilon_{m} \quad \begin{array}{l}
\text { Relative error due } \\
\text { to rounding (get } F P \\
\text { representation) is less } \\
\text { than machine epsilon }
\end{array}
\end{aligned}
$$

Rounding (roundoff) errors

$e_{r} \leqslant 5 \times 10^{-n}$

 $\operatorname{er} \leqslant 10^{k} \Rightarrow k=-n+1$$x_{-}$
$x=1 . b_{1} b_{2} b_{3} \ldots b_{n} \ldots \times 2^{m}$
x_{+}

$$
\frac{|\tilde{x}-x|}{|x|} \leq 2^{-23} \approx 1.2 \times 10^{-7}
$$

Single precision: Floating-point math consistently introduces relative errors of about 10^{-7}. Hence, single precision gives you about 7
(decimal) accurate digits.
Rule of thumb!

Double precision: Floating-point math consistently introduces relative errors of about 10^{-16}. Hence, double precision gives you about 16 (decimal) accurate digits.
$e_{r} \leqslant \epsilon_{m}$
Single Precision \Rightarrow er $\leqslant 2^{-23} \approx 1.2 \times 10^{-7} \leqslant 5 \times 10^{-n}$
Recall that $e_{r} \leqslant 5 \times 10^{-n}$
$n=7\left(\begin{array}{l}\text { single precision } \\ \text { gives about } 7\end{array}\right.$ gives about 7 decimal digits accuracy)
*even if we were to write

$$
\begin{gathered}
e_{r} \leqslant 10^{-n+1} \Rightarrow \log _{0}\left(e_{r}\right) \leqslant \log _{\infty}\left(D^{-n+1}\right)=(-n+1) 1 \\
n \leqslant 1-\log _{10}\left(e_{r}\right)=1-\log _{10}\left(1.2 \times 10^{-7}\right)
\end{gathered}
$$

$x \leqslant 7.92 \rightarrow$ so it does not quite give 8 decimal digits of accuracy!

Assume you are working with IEEE single-precision numbers. Find the smallest number a that satisfies
if $a<$ gap

$$
2^{8}+a \neq 2^{8}
$$

$$
2^{8}+a=2^{8}
$$

A) 2^{-1074}
else
B) 2^{-1022}
C) 2^{-52}
D) 2^{-15}
E) 2^{-8}

$$
2^{8}+a=\text { next FP }
$$

gap $=\epsilon_{m} \times 2^{8}=2^{-23} \times 2^{8}=2^{-15} \xrightarrow{\text { gap }} a>2^{-15}$
Rule of thumb: $\underbrace{q \times 2^{m}}_{x}+a \neq q \times 2^{m} \Rightarrow a>\epsilon_{m} 2^{m}$

Demo

$$
a=10^{5} \quad \beta=1.0
$$

while $(a+\beta)>a$:

$$
\beta=\beta / 2
$$

print (β)
Loop will terminate when $a+\beta=a$ double precision: $\beta=g a p=\frac{10^{-16}}{\epsilon_{m}} 10^{5}=10^{-11}$

Mathematical properties of FP operations

Not necessarily associative:
For some x, y, z the result below is possible:

$$
(x+y)+z \neq x+(y+z)
$$

Not necessarily distributive:
For some x, y, z the result below is possible:

$$
z(x+y) \neq z x+z y
$$

Not necessarily cumulative:
Repeatedly adding a very small number to a large number may do nothing

Demo: FP-arithmetic

Floating point arithmetic

Consider a number system such that $x= \pm 1 . b_{1} b_{2} b_{3} \times 2^{m}$ for $m \in[-4,4]$ and $b_{i} \in\{0,1\}$.

Rough algorithm for addition and subtraction:

1. Bring both numbers onto a common exponent
2. Do "grade-school" operation
3. Round result

- Example 1: No rounding needed
t

$$
\begin{aligned}
& a=(1.101)_{2} \times 2^{1} \\
& b=(1.001)_{2} \times 2^{1} \\
& 10.110 \times 2^{1}=1.0110 \times 2^{2}=1.011 \times 2^{2}
\end{aligned}
$$

Floating point arithmetic

Consider a number system such that $x= \pm 1 . b_{1} b_{2} b_{3} \times 2^{m}$ for $m \in[-4,4]$ and $b_{i} \in\{0,1\}$.

- Example 2: Require rounding

$$
\text { (7) } \left.\begin{array}{l}
a=(1.101)_{2} \times 2^{0} \\
b=(1.000)_{2} \times 2^{0}
\end{array}\right] \begin{aligned}
& 10.101 \times 2^{0}=1.0101 \times 2^{1} \xrightarrow{\text { chopping }} 1.010 \times 2^{-1}
\end{aligned}
$$

- Example 3:

$$
\begin{aligned}
\begin{aligned}
a=(1.100)_{2} \times 2^{1} \\
b=(1.100)_{2} \times 2^{-1}
\end{aligned} & 0.01100 \times 2^{2} \times 2^{-1}=0.01100 \times 2^{1} \\
& \left.\frac{1.100 \times 2^{1}}{1.111 \times 2^{1}(n 0} \text { rounding needed) }\right)
\end{aligned}
$$

Floating point arithmetic
Consider a number system such that $x= \pm 1 . b_{1} b_{2} b_{3} b_{4} \times 2^{m}$ for $m \in[-4,4]$ and $b_{i} \in\{0,1\}$.

- Example 4:
$\left.a=(1.1011)_{2} \times 2^{1}\right\}$ numbers are" close" to $\left.b=(1.1010)_{2} \times 2^{1}\right\}$ each other

$$
\begin{aligned}
c=a-b & \frac{1.1011 \times 2^{1}}{} \\
& \frac{-1.1010 \times 2^{1}}{0.0001 \times 2^{\prime}} \xrightarrow[\text { normalize }]{ } \frac{1 . ? ? ? ?}{\Uparrow} \times 2^{\prime}
\end{aligned}
$$

machine choice Significant digits! 1.000×2^{1}

Cancellation

$$
\begin{aligned}
& a=1 . a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} \ldots a_{n} \ldots \times 2^{m 1} \\
& b=1 . b_{1} b_{2} b_{3} b_{4} b_{5} b_{6} \ldots b_{n} \ldots \times 2^{m 2}
\end{aligned}
$$

Suppose $a \approx b$ and single precision (without loss of generality)

$$
\begin{aligned}
& a=1 . a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} \ldots a_{20} a_{21} 10 a_{24} a_{25} a_{26} a_{27} \ldots \times 2^{m} \\
& b=1 . a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} \ldots a_{20} a_{21} 11 b_{24} b_{25} b_{26} b_{27} \ldots \times 2^{m} \\
& f \&(b-a)=0.0000 \ldots 0001 \times 2^{m}
\end{aligned}
$$

$$
\Longrightarrow \text { normalize }
$$

Catas trophic

$$
f l(b-a) \underbrace{1.0000 \ldots 00} \times 2^{-n+m} n
$$ not significant bits (spurious

Example of cancellation:
Suppose

$$
\begin{aligned}
& a=1.1011 a_{5} a_{6} a_{7} \ldots \times 2^{1} \\
& b=1.1010 b_{5} b_{6} b_{7} \ldots \times 2^{\prime}
\end{aligned}
$$

using machine where $n=4 \Rightarrow a=1.1011 \times 2^{\prime}$

$$
b=1.1010 \times 2^{1}
$$

$$
\begin{aligned}
& a-b \Rightarrow \quad 1.1011 a_{5} a_{6} a_{7} \ldots \times 2^{1} \\
& \frac{\Theta^{1.1010} b_{5} b_{6} b_{7} \cdots \times 2^{\prime}}{0.0001 \times 2^{1}}
\end{aligned}
$$

Cancellation

$a=1 . a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} \ldots a_{n} \ldots \times 2^{m 1}$
$b=1 . b_{1} b_{2} b_{3} b_{4} b_{5} b_{6} \ldots b_{n} \ldots \times 2^{m 2}$

For example, assume single precision and $m 1=m 2+18$ (without loss of generality), i.e. $a \gg b$
$f l(a)=1 . a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} \ldots a_{22} a_{23} \times 2^{m+18}$
$f l(b)=1 . b_{1} b_{2} b_{3} b_{4} b_{5} b_{6} \ldots b_{22} b_{23} \times 2^{m}$

1. $a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} \ldots a_{22} a_{23} \times 2^{m+18}$
$+0.0000 \ldots 001 b_{1} b_{2} b_{3} b_{4} b_{5} \times 2^{m+18}$
In this example, the result $f l(a+b)$ only included 6 bits of precision from $f l(b)$. Lost precision!

Loss of Significance

How can we avoid this loss of significance? For example, consider the function $f(x)=\sqrt{x^{2}+1}-1$

If we want to evaluate the function for values x near zero, there is a potential loss of significance in the subtraction.
Let's consider five-decimal digit arithmetic and evaluate $f(x)$ at $x=10^{-3}$

$$
f(x)=\sqrt{10^{-6}+1}-1=\text { zero! (since } 10^{-6} \text { is smaller }
$$ than machine epsilon $\epsilon_{m} \approx 10^{-5}$)

How can we obtain better results and avoid cancellation?

Loss of Significance

Re-write the function as $f(x)=\frac{x^{2}}{\sqrt{x^{2}+1}-1}$ (no subtraction!)

Re-write the function to "eliminate" subtraction of similar numbers

$$
\begin{aligned}
f(x) & =\sqrt{x^{2}+1}-1=\left(\sqrt{x^{2}+1}-1\right)\left(\frac{\sqrt{x^{2}+1}+1}{\sqrt{x^{2}+1}+1}\right) \\
& =\frac{\left(\sqrt{x^{2}+1}\right)^{2}-1^{2}}{\sqrt{x^{2}+1}+1}=\frac{x^{2}+1-1}{\sqrt{x^{2}+1}+1}=\frac{x^{2}}{\sqrt{x^{2}+1}+1}
\end{aligned}
$$

$f\left(10^{-3}\right)=\frac{10^{-6}}{\sqrt{10^{-6}+1}+1}=\frac{10^{-6}}{2} \quad \begin{aligned} & \text { (note that } 10^{-6} \text { is not zero, i.e. } \\ & 10^{-6}<\epsilon_{m}\end{aligned}$ $10^{-6}<\epsilon_{m}$ but not smaller than UFL)

Example: exact values

If $x=0.3721448693$ and $y=0.3720214371$ what is the relative error in the computation of $(x-y)$ in a computer with five decimal digits of accuracy?
approximations using 5 decimal digits

$$
\begin{aligned}
& \tilde{x}=0.37214 \\
& \tilde{y}=0.37202
\end{aligned}
$$

relative error due to rounding:

$$
\begin{aligned}
& \frac{|x-\tilde{x}|}{|x|}=1.3 \times 10^{-5} \\
& e_{r}=\frac{|(x-y)-(\tilde{x}-\tilde{y})|}{|x-y|} \text { (relative error of difference) } \\
& e_{r}=\frac{0.0001234322-0.00012}{0.000123 * 322} \simeq 3 \times 10^{-2} \rightarrow \text { the error } \\
& \text { sue to the } \\
& \text { sounding ed bo the action is e in e to to } \\
& \text { round }
\end{aligned}
$$

