

Another example...

Consider the function $f(x) = 2x^2 + 27x + 1000$

1)
$$x \rightarrow 0$$
: $f(x) = 2x^{2} + 27x + 1000 \rightarrow f(x) = 0(1)$
go to constant $x \rightarrow 0$
zero faster (dominant)
2) $x \rightarrow \infty$: $f(x) = 2x^{2} + 27x + 1000 \rightarrow f(x) = 0(x^{2})$
 $x \rightarrow \infty$
dominant
trm when $x \rightarrow \infty$

Iclicker question

Suppose that the truncation error of a numerical method is given > dominant by the following function: $E(h) = 5h^2 + 3h \quad (E(h)) \leq Mh$ Which of the following functions are Oh-estimates of E(h) as $h \rightarrow 0$ 15h2+3h 1 < M (5h2) NO Mark the correct 1) $O(5h^2)$ 15h+3h15 Mh V answer: 2) O(h) [5h²+3h] ≤ M(5h²+3h) √ A) 1 and 2 $O(5h^2+3h)$ B) 2 and 3 4) $O(h^2)$ 15h2+3h1 < Mh NO C) 2 and 4

C) 2 and 4D) 3 and 4E) NOTA

Iclicker question

Suppose that the complexity of a numerical method is given by the following function: $c(n) = 5n^2 + 3n$

Which of the following functions are Oh-estimates of c(n) as $n \to \infty$ 1) $0(5n^2 + 3n)^{\checkmark}$ Mark the correct 2) $O(n^2)$ **</** answer: 3) $O(n^3)$ **</** A) 1,2,3 4) **0(***n***)** × B) 1,2,3,4 C) 4 D) 3 E) NOTA

