Revising Big-Oh notation

Let f and g be two functions. Then

$$
f(x)=\mathcal{O}(g(x)) \quad \text { as } x \rightarrow \infty
$$

if and only if there exists a value M and some x_{0} so that

$$
\begin{aligned}
& \text { if and only if there exists a value } M \text { and some } x_{0} \text { so the } \\
& f(x)=x^{2}+\underbrace{|f(x)| \leq M|g(x)| \text { for all } x \geq x_{0}}_{x \rightarrow \infty} \\
& \qquad x^{4}
\end{aligned}
$$

this term grows faster (dominant)

$$
|f(x)| \leqslant M x^{4} \longrightarrow f(x)=0\left(x^{4}\right)
$$

Want to bound $f(x)$ by a function $g(x)$ as $x \rightarrow \infty$

- complexity - time (and how the grow as dimension of problem increases)
most often we have $x \rightarrow 0$
or ... think about $x \rightarrow a$
(For example, how does the error decay when we decrease the value of the interval h ($h \rightarrow 0$) between points when interpolating a function?)
$|f(x)| \leq M|g(x)|$ for all x where $0<|x-a|<\delta$ $\xrightarrow{\left\langle V_{0} f^{2}\right.}$

$$
\begin{aligned}
& f(x)=\underbrace{\underbrace{3 x^{4}}_{\text {this term goes to zero faster }}, x \rightarrow 0}_{\begin{array}{c}
x^{2} \\
\text { dominant } \\
\text { term }
\end{array}} \rightarrow|f(x)|=O\left(x^{2}\right)
\end{aligned}
$$

Another example...

Consider the function $f(x)=2 x^{2}+27 x+1000$

1) $x \rightarrow 0: f(x)=\underbrace{2 x^{2}+27 x}_{\begin{array}{c}\text { go to } \\ \text { zero faster }\end{array}}+\underbrace{1000}_{\begin{array}{c}\text { constant } \\ \text { (dominant) }\end{array}} \rightarrow \begin{gathered}f(x)=0(1) \\ x \rightarrow 0\end{gathered}$
2) $x \rightarrow \infty: f(x)=\underbrace{2 x^{2}}_{\downarrow}+27 x+1000 \rightarrow \begin{gathered}f(x)=0\left(x^{2}\right) \\ x \rightarrow \infty\end{gathered}$
dominant
term when $x \rightarrow \infty$

Iclicker question

Suppose that the truncation error of a numerical method is given by the following function: goes to zero $\quad>$ dominant

$$
E(h)=\widetilde{5 h^{2}}+3 h \mid \overline{|E(h)|} \leqslant M h
$$

Which of the following functions are Oh-estimates of $E(h)$ as $h \rightarrow 0$
$\left|5 h^{2}+3 h\right| \leqslant M\left(5 h^{2}\right) ~ N O$
Mark the correct

1) $O\left(5 h^{2}\right)$
2) $O(h) \checkmark$
3) $O\left(5 h^{2}+3 h\right) \checkmark$
4) $O\left(h^{2}\right)$
answer:
$\left|5 h^{2}+3 h\right| \leqslant M h r$
A) 1 and 2
B) 2 and 3
C) 2 and 4
D) 3 and 4
E) NOTA

Iclicker question

Suppose that the complexity of a numerical method is given by the following function:

$$
c(n)=\frac{\text { dominant }}{\substack{\text { dom } \\ \text { tern }}}|c(n)| \leqslant M n^{2}
$$

Which of the following functions are Oh-estimates of $c(n)$ as $n \rightarrow \infty$

1) $\mathrm{O}\left(5 n^{2}+3 n\right)^{\checkmark}$ Mark the correct
2) $O\left(n^{2}\right) \checkmark \quad$ answer:
3) $0\left(n^{3}\right) r$
A) $1,2,3$
4) $O(n) \times$
B) $1,2,3,4$
C) 4
D) 3
E) NOTA

Select the function that best represents the decay of the error as n increases

A) $e^{-2 n}$
B) e^{-n}
C) n^{-1}
D) n^{-2}

$$
\log (y)=\underbrace{\alpha \log (e), n}
$$

$$
\begin{aligned}
& \log (y)=\underbrace{\alpha \log (e)}=\frac{4 \log (10)}{-4.5} \Rightarrow \alpha=\frac{4 \overbrace{\log (10)}^{1}}{-4.5 \underbrace{\log (e)}_{0.434}} \\
& \alpha=-2.04 \mathrm{ll}
\end{aligned}
$$

