Truncation errors: using Taylor series to approximate functions

Approximating functions using polynomials:

Let's say we want to approximate a function f(x) with a polynomial

$$f(x) = a_o + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + \cdots$$

For simplicity, assume we know the function value and its derivatives at $x_o = 0$ (we will later generalize this for any point). Hence,

$$f'(x) = a_{1} + 2 a_{2} x + 3 a_{3} x^{2} + 4 a_{4} x^{3} + \cdots$$

$$f''(x) = 2 a_{2} + (3 \times 2) a_{3} x + (4 \times 3) a_{4} x^{2} + \cdots$$

$$f'''(x) = (3 \times 2) a_{3} + (4 \times 3 \times 2) a_{4} x + \cdots$$

$$f''(x) = (4 \times 3 \times 2) a_{4} + \cdots$$

$$f^{(i)} = (1 \times (i-1) \times (i-2) \times \cdots \times 1) a_{i}$$

$$f(0) = a_{0} \qquad f''(0) = 2 a_{2} \qquad f''(0) = (4 \times 3 \times 2) a_{4}$$

$$f'(0) = a_{1} \qquad f'''(0) = (3 \times 2) a_{3}$$

Taylor Series

 \sim

Taylor Series approximation about point $x_o = 0$

$$f(x) = a_o + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + \cdots$$

$$f(x) = \sum_{i=0}^{\infty} a_i x^i \qquad \Longrightarrow \qquad \int f(x) = \sum_{i=0}^{\infty} \frac{f^{(i)}}{i!} X_i^i$$

→ approximate function values → approximate durivatives → estimating errors

Taylor Series

In a more general form, the Taylor Series approximation about point x_o is given by:

$$f(x) = f(x_o) + f'(x_o)(x - x_o) + \frac{f''(x_o)}{2!}(x - x_o)^2 + \frac{f'''(0)}{3!}(x - x_o)^3 + \cdots$$

$$f(x) = \sum_{i=0}^{\infty} \frac{f^{(i)}(x_o)}{i!} (x - x_o)^i$$

Example:

Assume a finite Taylor series approximation that converges everywhere for a given function f(x) and you are given the following information:

$$f(1) = 2; f'(1) = -3; f''(1) = 4; f^{(n)}(1) = 0 \forall n \ge 3$$

Evaluate $f(4)$

$$f(x) = f(x_0) + f'(x_0)(x_{-x_0}) + f''(x_0)(x_{-x_0})^2 + f'''(x_0)(x_{-x_0})^3 + \cdots$$

Make $x = 4$ and $x_0 = 1$

$$f(A) = f(1) + f'(1)(4-1) + f''(1)(4-1)^2 = 2 + (-3)(4-1) + f'(4-1)^2$$

$$= 2 - 9 + 18 = 7 f(4) = 11$$

Taylor Series

We cannot sum infinite number of terms, and therefore we have to **truncate**. $x = h + x_0$

How **big is the error** caused by truncation? Let's write $h = x - x_o$

$$\begin{aligned} f(x_{0}+h) &= f(x_{0}) + f'(x_{0})h + \frac{f''(x_{0})}{2!}h^{2} + \frac{f''(x_{0})h^{2}}{3!}h^{2} + \cdots \\ f(x_{0}+h) &= \sum_{i=0}^{n} \frac{f^{(i)}(x_{0})h^{i}}{i!} + \sum_{i=n+1}^{\infty} \frac{f^{(i)}(x_{0})h^{i}}{i!} \\ exact & truncated part & what we are neglecting \\ f(x) & (Taylor approximation) & error \\ f(x) & ot degree n & t_{n}(x) \end{aligned}$$

Taylor series with remainder

Let f be (n + 1)-times differentiable on the interval (x_o, x) with $f^{(n)}$ continuous on $[x_o, x]$, and $h = x - x_o$

error = exact - approximation

error =
$$f(x) - t_n(x) = \sum_{i=n+1}^{\infty} \frac{f^{(i)}(x_0)}{i!} h^i$$

$$= \frac{f^{(n+1)}(x_0)}{(n+1)!} h^{n+1} + \frac{f^{(n+2)}(x_0)}{(n+2)!} h^{n+2} + \cdots$$

$$\frac{(n+1)!}{(n+2)!} h^{n+2} + \cdots$$

$$\frac{dominant}{dominant} term when $h \to 0 \quad (\text{or } x \to x_0)$

$$\frac{dominant}{dominant} term when h \to 0 \quad (\text{or } x \to x_0)$$$$

Taylor series with remainder

Let f be (n + 1)-times differentiable on the interval (x_o, x) with $f^{(n)}$ continuous on $[x_o, x]$, and $h = x - x_o$

Graphical representation:

Example:

Given the function

$$f(x) = \frac{1}{(20x - 10)}$$

Write the Taylor approximation of degree 2 about point $x_o = 0$ Given the function : $f(x) = _$ 20x-10 Write the Taylor approximation of degree 2 about to = 0 $f(x) = \frac{-1(20)}{(20x - 10)^2}; \quad f'(0) = \frac{-20}{(-10)^2} = -\frac{1}{5}$ $f''(x) = \underbrace{+20(20x-10)2(20)}_{(20x-10)^4} = \underbrace{-\frac{200}{(20x-10)^3}}_{(20x-10)^3} \qquad f''(0) = \underbrace{-\frac{800}{1000}}_{1000} = -\frac{4}{5}$ $|\mathcal{R}_{2}(\mathbf{x})| \leq \left|\frac{f''(\mathbf{0})}{3!} \mathbf{x}^{3}\right| \quad \text{error} = O(\mathbf{x}^{3})$ $t_2(x) = -\frac{1}{10} - \frac{1}{5}x - \frac{1}{2}(\frac{4}{5})x^2$

Example:

Given the function

$$f(x) = \sqrt{-x^2 + 1}$$

Write the Taylor approximation of degree 2 about point $x_o = 0$

$$\begin{aligned} f(x) &= f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \cdots \\ f(0) &= 1 \\ f'(x) &= \frac{1}{2}(-x^2 + 1)^{1/2}(-2x) = -x(1 - x^2)^{1/2} \longrightarrow f'(0) = 0 \\ f''(x) &= -\frac{1}{2}x(1 - x^2)^{-3/2}(-2x) - (1 - x^2)^{-1/2} \longrightarrow f''(0) = -1 \\ \hat{f}(x) &= 1 - \frac{1}{2}(x)^2 \quad \text{or} \quad t_2(x) = 1 - \frac{x^2}{2} \end{aligned}$$

error = $t_2(x) - f(x)$ 10° $f(x) = N - x^2 + 1'$ 10^{-2} $t_2(x) = 1 - \frac{x}{2}$ 10^{-4} D 10[−]° $\left| R_{2} \right| \leq \left| \frac{f^{(1)}(\xi)}{3!} h \right| = O(h^{3})$ 10^{-8} 10-10 10-12 here $h = \times - \times_0 = \times$ 10-2 10° 10-3 10-1 Let's get Big-O of error from the plot! $\rightarrow \text{error} = O(h^4)$ $slope = \frac{\log(10^{-5}) - \log(10^{-9})}{\log(10^{-2})} = \frac{-5+9}{-1+2} = 4$ what happened here! $\rightarrow J''(x) = 0$ hence the next term that is not zero is f"(x)

Example:		DEMO
Error Order for series The series expansion for e^x at $exp(2) \cdot (1 + (x - 2))$ If we evaluate e^x using only the only terms up to and including notation?	Prove the provided as e^{1} point e^{1} point e^{2} e^{2} point e^{2} e^{2} e^{2} e^{2} e	$\frac{(x-2)^{4} + (x-2)^{5} + \dots}{5!}$ $\frac{4!}{5!} = O((x-2)^{4})$ $\frac{1}{5!} = O((x-2)^{4})$
Choice* A) $O(x^4)$ B) $O(x^5)$ C) $O(x^3)$ D) $O((x-2)^3)$ E) $O((x-2)^4)$	all are valid options!	$* e \leq M \times^{4}$ $0.5 \times \rightarrow 2$, $e(x)$ does not show asymptotic behavior d.

Finite difference approximation

For a given smooth function f(x), we want to calculate the derivative f'(x) at x = 1.

Suppose we don't know how to compute the analytical expression for f'(x), but we have available a code that evaluates the function value:

def f(x):
 # do stuff here
 feval = ...
 return feval

Can we find an approximation for the derivative with the available information? $\frac{1}{100}$

Demo: Finite Difference

 $f(x) = e^x - 2$

We want to obtain an approximation for f'(1)

$$dfexact = e^{x} \underbrace{f(xh)}_{h} \underbrace{f(x)}_{h}$$

$$dfapprox = \frac{e^{x+h} - 2 - (e^{x} - 2)}{h}$$

$$error(h) = abs(dfexact - dfapprox)$$

$$error < \left| f''(\xi) \frac{h}{2} \right|$$

truncation error

Demo: Finite Differen	ce		
	h	error	
$f(x) = e^x - 2$	1.000000E+00	1.952492E+00 8.085327E-01	
We want to obtain an approximation for $f'(1)$	2.500000E-01 1.250000E-01	3.699627E-01 1.771983E-01	
$dfexact = e^x$	6.250000E-02 3.125000E-02	8.674402E-02 4.291906E-02	
$e^{x+h} - 2 - (e^x - 2)$	1.562500E-02 7.812500E-03	2.134762E-02 1.064599E-02	
afapprox =h	3.906250E-03 1.953125E-03	5.316064E-03 2.656301E-03	
error(h) = abs(dfexact - dfapprox)	9.765625E-04 4.882812E-04	1.327718E-03 6.637511E-04	
Labsolute error!	2.441406E - 04 1.220703E - 04 6.103516E - 05	3.318485E-04 1.659175E-04 8.295707E-05	
$error < \left f''(\xi) \frac{h}{2} \right $	3.051758E-05	4.147811E-05 2.073897E-05	
	7.629395E-06 3.814697E-06	1.036945E-05 5.184779E-06	
truncation error	1.907349E-06	2.592443E-06	

$$f'(x) = \lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{h} \right)$$

Should we just keep decreasing the perturbation h, in order to approach the limit $h \rightarrow 0$ and obtain a better approximation for the derivative?

