
Truncation errors: using Taylor series 
to approximate functions



Let’s say we want to approximate a function !(#) with a polynomial

For simplicity, assume we know the function value and its derivatives at 
#% = 0 (we will later generalize this for any point). Hence, 

Approximating functions using polynomials:
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Taylor Series
Taylor Series approximation about point !" = 0
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→ approximate function values

→ approximate derivatives

→ estimating errors



Taylor Series

! " = ! "$ + !& "$ (" − "$) +
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!&&& 0
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In a more general form, the Taylor Series approximation about point 
"$ is given by:
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Example:
Assume a finite Taylor series approximation that converges 
everywhere for a given function !(#) and you are given the 
following information: 

! 1 = 2; !)(1) = −3; !))(1) = 4; ! - 1 = 0 ∀ 0 ≥ 3
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Taylor Series
We cannot sum infinite number of terms, and therefore we have to 
truncate. 

How big is the error caused by truncation? Let’s write ℎ = # − #%
x = ht Xo
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Taylor series with remainder
Let ! be (# + 1)-times differentiable on the interval ('(, ') with !(*)
continuous on ['(, '], and ℎ = ' − '(
error = exact - approximation
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Taylor series with remainder
Let ! be (# + 1)-times differentiable on the interval ('(, ') with !(*)
continuous on ['(, '], and ℎ = ' − '(
error = exact - approximation
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Graphical representation:
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Example:
Given the function

! " = 1
(20" − 10)

Write the Taylor approximation of degree 2 about point "* = 0

found
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write the Taylor approximation of degree 2 about to = o
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Example:
Given the function

! " = −"% + 1

Write the Taylor approximation of degree 2 about point "( = 0
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Example:

A)
B)
C)
D)
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Demo “Taylor of exp(x) about 2”
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Finite difference approximation
For a given smooth function ! " , we want to calculate the derivative 
!′ " at  " = 1.
Suppose we don’t know how to compute the analytical expression for !′ " , 
but we have available a code that evaluates the function value:

Can we find an approximation for the derivative with the available information? YES !

Caldasf
'

G) = ¥¥fffGth)h-f#)

Can we simply use f
'
G) a fCxth)h-f# and make

h small ? How do we choose h ?

what is the error ?
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Demo: Finite Difference

! " = $% − 2

(!$")*+ = $%

(!),,-." = $%/0 − 2 − ($%−2)
ℎ

$--.-(ℎ) = )45((!$")*+ − (!),,-.")

We want to obtain an approximation for !′ 1

$--.- < !99 : ℎ
2

truncation error
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Demo: Finite Difference

! " = $% − 2

(!$")*+ = $%

(!),,-." = $%/0 − 2 − ($%−2)
ℎ

$--.-(ℎ) = )45((!$")*+ − (!),,-.")

We want to obtain an approximation for !′ 1

ℎ $--.-

$--.- < !99 : ℎ
2

truncation error
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Demo: Finite Difference

Should we just keep decreasing the perturbation ℎ, 
in order to approach the limit ℎ → 0 and obtain a 
better approximation for the derivative? 
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Uh-Oh!
What happened here?
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