Making music

September 3, 2019

In [1]: import random
import matplotlib.pyplot as plt
Jmatplotlib inline
import numpy as np

import scipy.io.wavfile as wav
import IPython.display as ipd

1 Some introductory functions

1.0.1 List comprehensions

List comprehensions are a versatile syntax for mapping a function (or expression) across all ele-
ments of a list. Read the function below. Do you understand what is happening with the argu-
ments and retun values?

In [2]: # The function below accepts a list L
and returns another list with elements of L three times as large
def three_ize(L):
this 7s an example of a list comprehension
LC = [3 * x for x in L]
return LC

What is the return value of three_ize(list1)?
In [3]: listl = [1,4,5,10]

In [4]: #clear
three_ize(list1)

Out[4]: [3, 12, 15, 30]
1.0.2 Write the function scale
The function should have the following signature:

In [5]: def scale(L, scale_factor):

rr

returns a list similar to L, except that each element has been
multiplied by scale_factor.

1

In [6]: #clear
def scale(L, scale_factor):

returns a list similar to L, except that each element has been
multiplied by scale_factor.

P

LC = [scale_factor * x for x in L]
return LC

Now you can use the function scale with the given variable 1ist

In [7]: #clear
list4 = scale(listl,4)
print(list4)

(4, 16, 20, 40]

1.0.3 Write the function add_2:

The function should have the following signature:

In [8]: def add_2(L, M):

takes two lists L and M and

returns a single list that is an element-by-element sum of the two arguments
If the arguments are different lengths, the function add_2 should

return a list that is as long as the shorter of the two.

Just ignore the extra elements from the longer list.

P

In [9]: #clear
def add_2(L, M):
takes two lists L and M and
returns a single list that is an element-by-element sum of the two arguments
If the arguments are different lengths, the function add_2 should
return a list that ts as long as the shorter of the two.
Just ignore the extra elements from the longer list.
N = min(len(L),len(M))
list_add = []
for i in range(N):
list_add.append(L[i]+M[i])
return(list_add)

Define two lists, and use your function add_2

In [10]: #clear
add_2(1list1,list4)

Out[10]: [5, 20, 25, 50]

1.0.4 Write the function add_scale_2:

The function should have the following signature:

In [11]: def add_scale_2(L, M, L_scale, M_scale):
Iy
takes two lists L and M and two floating-point numbers L_scale and M_scale.
These stand for scale for L and scale for M, respectively.
Returns a single list that is an element-by-element sum of the two inputs,
each scaled by tts respective floating-point value.
If the inputs are different lengths, your add_scale_2 should return a list that is
as long as the shorter of the two. Again, just drop any extra elements.

rr

In [12]: #clear
def add_scale_2(L, M, scalel, scale2):
takes two lists L and M and two floating-point numbers L_scale and M_scale.
These stand for scale for L and scale for M, respectively.
Returns a single list that is an element-by-element sum of the two inputs,
each scaled by tts respective floating-point value.
If the inputs are different lengths, your add_scale_2 should return a list that s
as long as the shorter of the two. Again, just drop any extra elements.
N = min(len(L),len(M))
list_add = []
for i in range(N):
list_add.append(scalel*L[i]+scale2*M[i])
return(list_add)

What is the result of
L1 = [1,3,5,2]
L2 = [3,1,4,4]

add_scale_2(L1,L2,2,3)

In [13]: #clear
L1 = [1,3,5,2]
L2 = [3,1,4,4]
add_scale_2(L1,L2,2,3)

Out[13]: [11, 9, 22, 16]

1.0.5 How can you obtain the same result using numpy arrays?

Define two numpy arrays and perform the same operation defined by the function add_scale_2

In [14]: #clear
M1 = np.array(L1)
M2 = np.array(L2)
2*M1+3*M2

Out[14]: array([11, 9, 22, 16])

1.0.6 Helper function add_noise

Take a look at the function below. What is happening to the scalar argument x?

In [15]: def add_noise(x, chance_of_replacing, noise):
"""add_notse accepts an original value,
and a fraction named chance_of_replacing.

With the "chance_of_replacing” chance, 1t
returns the number = + noise

Otherwise, it should return x
nnn
r = random.uniform(0, 1)
if r < chance_of_replacing:
return x + noise
else:
return x

1.0.7 Create the function array_add_noise

Create a function array_add_noise that replace entries in a numpy array L using the helper func-
tion above. Entries in the array should be replaced with probability prob

In [16]: def array_add_noise(L,prob,noise):
""'"takes a 1D numpy array L,
and modify entries of L using the helper function add_noise
Note that this function should not return a new object,
1t should instead modify the given object

rr

In [17]: #clear
Replace entries in a numpy array using the helper function randomize
def array_add_noise(L,prob,noise):
for i in range(len(L)):
L[i] = add_noise(L[i],prob,noise)

You are given the numpy array:

In [18]: L = np.array([4,2,5,6,9],dtype=float)

What happens to L after you call the function array_add_noise? Print L and id (L) before and
after the function call.

In [19]: #clear
print(L, id(L))
array_add_noise(L,0.4,0.1*min(L))
print (L, id(L))

[4. 2. 5. 6. 9.] 103301150080
[4. 2.2 5. 6.2 9.2] 103301150080

Modify the function array_add_noise defined above to take an optional parameter inplace
which by default is True. When inplace is False, the function will create a new numpy array and
return it with the modified values, but it won’t replace the entries in the original array.

In [20]: #clear
Replace entries in a numpy array using the helper function randomize

def array_add_noise(L,prob,noise,inplace=True):
if inplace:
for i in range(len(L)):
L[i] = add_noise(L[i],prob,noise)
return
else:
newL = np.copy(L)
for i in range(len(L)):
newL[i] = add_noise(L[i],prob,noise)

return newL

Use the updated array_add_noise function to: 1) modify a given numpy array inplace 2)
create a new numpy array Print the numpy array before and after the function call. Print the id.

What do you observe?
In [21]: #clear

L = np.array([4,2,5,6,9] ,dtype=float)
print(L,id(L))

Lnew = array_add_noise(L,0.5,0.1,inplace=True)
print(L,Lnew,id (L) ,id(Lnew))

[4. 2. 5. 6. 9.] 103301148720
[4. 2. 5.1 6. 9.1] None 103301148720 4407013448

2 Let’s start playing with sounds

2.0.1 Create a sinusoidal sound

In [22]: # Define the duration of the sound we want to create:
duration in seconds
duration = 5

In [23]: # Define the rate of the sound, which is the number of sample points per second
DEFAULT_RATE = 44100

In [24]: # The total number of sample points that define your sound %s:
nsamples = int (DEFAULT_RATE*duration)

In [25]: # Then create a numpy array that define the range of the sound, i.e.,
nsamples points equaly spaced in the range (0,duration) [s]
t = np.linspace(0,duration,nsamples)

Create a sound array corresponding to the function

f(t) = sin(220(27tt)) + sin(224(27t))
data = ...

In [26]: #clear
data = np.sin(2+#np.pi*220*t) + np.sin(2*np.pi*224xt)

Use plt.plot(t,data) to plot your function:

In [27]: #clear
Plot the sound
plt.plot(t,data)

Out [27]: [<matplotlib.lines.Line2D at 0x180d3ef4a8>]

2.0 1

15

10

05

0.0

—0.5 1

-1.0 1

-1.5 1

—2.0 -

Check the sound you just created!
In [28]: #ipd.Audio(data,rate=DEFAULT_RATE)

You can also try different functions!

2.0.2 Create a music note

Let’s make the sound of the A5 note. (https://en.wikipedia.org/wiki/Piano_key_frequencies)

In [29]: # We want to have the note played for 0.5 seconds
duration = 0.5
Define the rate
rate = DEFAULT_RATE
The number of samples needed s
nsamples = int(rate*duration)
The frequency of A5 2s 880.
freq = 880
t = np.linspace(0, duration, nsamples)
data = np.sin(freg*2*np.pi*t)
ipd.Audio(data,rate=rate)

Out [29] : <IPython.lib.display.Audio object>

2.0.3 Write a function make_note

Just add the steps described above to define the function make_note

In [30]: def make_note(freq, duration=0.3, rate=DEFAULT_RATE):
recetves as arguments:
- frequency of the note (freq)
- duration of the sound (set as default equal to 0.3)
- rate (samples per second)
and returns:
- np.array data with the beep

o

In [31]: #clear
def make_note(freq, duration=0.3, rate=DEFAULT_RATE):

i

recetves as arguments:
- frequency of the note (freq)
- duration of the sound (set as default equal to 0.3)
- rate (samples per second)

and returns:
- np.array data with the beep

i

nsamples = int(rate * duration)

make a time sequence

t = np.linspace(0, duration, nsamples)

make a (sine) sound wave with frequency = freq
data = np.sin(freg*2+*np.pixt)

return data

Use note = make_note(...) function to create the following sounds:

note duration freq

A4 3 440
C4 4 261.6256

Then you can plot the sound array using;:
plt.plot(note)

And listen to the sound using;:
ipd.Audio(note,rate=DEFAULT_RATE)

In [32]: #clear
note_A5 = make_note (440)
plt.plot(note_A5)
ipd.Audio(note_A5,rate=DEFAULT_RATE)

Out [32] : <IPython.lib.display.Audio object>

100

075 1

050

025 1

0.00

—0.25 1

—0.50 1

—0.75 1

=1.00 -

0 2000 4000 6000 8000 10000 12000

2.0.4 Modify the function make_note so that it parabolically decays to zero over the time du-
ration of the sound

We need a ramp function, which starts with value equal to 1 and finishes with value of zero, and
includes nsamples data points

In [33]: ramp = np.linspace(0, 1, nsamples)

Check the function that gives the linear decay:
plt.plot(l-ramp)

And also the functin that gives the parabolical decay
plt.plot ((1-ramp)**2)

In [34]: #clear
Here 1s the linear decay
plt.plot(l-ramp)
Here 1s the parabolical decay
plt.plot((1-ramp)**2)

Out[34]: [<matplotlib.lines.Line2D at 0x1817595748>]

10 1

0.8

0.6

04

0.2

0.0

0 5000 10000 15000 20000

Modify the function make_note so that it applies the decay above to the data array

In [35]: #clear
def make_note(freq, duration=0.3, rate=DEFAULT_RATE):

rr

recetves as arguments:

- frequency of the note (freq)
- duration of the sound (set as default equal to 0.3)
- rate (samples per second)
and returns:
- np.array data with the beep
nsamples = int(rate * duration)
make a time sequence
t = np.linspace(0, duration, nsamples)
make a (sine) sound wave with frequency = freq
data = np.sin(freg*2*np.pixt)
ramp = np.linspace(0, 1, nsamples)

return datax(l-ramp)**2

Use your function to create the note A8 (freq=7040) with duration of 2 sec-
onds. Then plot the sound array using plt.plot(note) and listen to the sound using
ipd.Audio(note,rate=DEFAULT_RATE)

In [36]: #clear
data_A1l = make_note(7040,duration=2)
plt.plot(data_A1l)
ipd.Audio(data_Al,rate=DEFAULT_RATE)

Out[36]: <IPython.lib.display.Audio object>

100 -

075 1

0.50 4

025 1

0.00

—0.25 -

—0.50 1

—0.75 1

—1.00

0 20000 40000 E0000 BO00D

10

Toke Me Out to the Ball Game

Albert von Tilzer
Lively Arranged by Julie A. Lind
c C/G G G/D
/) L) - f f }
e — | i ! -
NS — I - L = &=
[=a I b [ZH
fn!f Take ne out to the ball game.

L 100
e
.
| 108
W
W
w |
w |

=
title

2.0.5 Make music

You can use numpy.hstack to combine notes to make music. Try to make a music by using the fre-
quencies in freq_example consecutively, using the same duration for all notes. Store the combined
array in the variable music.

In [37]: freq_example = [261.6256,293.6648,329.6276,349.2282,391.9954,440.0000,493.8833,523.2511
In [38]: music = ...

In [39]: #clear
music = np.array([])
for fr in freq_example:
music = np.hstack((music, make_note(fr,duration=0.5)))

Listen to the music you created using ipd.Audio(music,rate=DEFAULT_RATE)

In [40]: #clear
ipd.Audio(music,rate=DEFAULT_RATE)

Out [40]: <IPython.lib.display.Audio object>
What did you get?

2.0.6 We can make "real" music :-)

Here is how we could write the song above:

duration freq

261.626
523.251
440.0

391.995
329.628
391.995
293.665

Samar»n0n|z
5]

W W= =N

11
We enter the above information as a list of lists:

In [41]: notes = [

Fes N/ A AT

In [43]:

Out [43]:
In [44]:

Qut [44] :

make a time sequence

t = np.linspace(0, duration, nsamples)

make a (sine) sound wave with frequency = freq
data = np.sin(freg*2+*np.pixt)

ramp = np.linspace(0, 1, nsamples)

return data*(l-ramp)**2
music = np.array([])
for note in notes:
music = np.hstack((music, make_note(note[1],duration=0.5*note[0])))
ipd.Audio(music,rate=DEFAULT_RATE)
<IPython.lib.display.Audio object>

ipd.Audio(music,rate=DEFAULT_RATE)

<IPython.lib.display.Audio object>

where notes[i] gives the list [duration,freq] for the note i. You can again use hstack (or any
other method you want) to combine the notes to make music.

Create the numpy array music using the list notes above, and play the music using

ipd.Audio(music,rate=DEFAULT_RATE)

2.0.7 Name the music!

I will now give you different notes, and you will tell me the name of the music.

In [45]:

#clear

Frozen

notes = [
[0.5,392],
[0.5,392],
[0.5,392],
[0.5,293.66],
[0.5,392],
[0.5,493.88],
[1,440],
[3,493.88],
[1,0],
[0.5,392],
[0.5,392],
[0.5,293.66],
[0.5,392],
[0.5,493.88],
[2,440]]

Star 1s Born

12

notes = [[0.5,659.2551],
[0.5,659.2551],
[0.5,659.2551],
[1,587.3295],
[4.5,493.8833],
[1,0],
[0.5,523.2511],
[0.5,523.2511],
[0.5,523.2511],
[0.5,523.2511],
[0.5,523.2511],
[0.5,523.2511],
[0.5,523.2511],
[1,493.8833],
[2.5,440.0000]

Star Wars
notes = [[2,261.6256],
[1,391.9954],
[0.5,349.2282],
[0.5, 329.6276],
[0.5,293.6648],
[2, 523.2511],
[1,391.9954],
[0.5,349.2282],
[0.5, 329.6276],
[0.5,293.6648],
[2, 523.2511],
[1,391.9954],
[0.5,349.2282],
[0.5, 329.6276],
[0.5,349.2282],
[3,293.6648]

The greatest show man

notes = [[0.6,293.6648],
[0.6,440.0000],
[1.2, 369.9944],
(0.3, 01,
[0.6,293.6648],
[0.6,440.0000],
[1.2, 369.9944],
(0.3, 01,
[0.6,293.6648],
[0.6,440.0000],
[1.2, 369.9944],

[0.4, 369.9944 1,
[0.8, 369.9944 1,
[0.4, 329.6276],
[1.2, 329.6276] ,
[0.6, 293.6648],
[0.6, 293.6648],
[1.6, 293.6648]]

In [46]: notes = [[2,261.6256],
[1,391.9954],
[0.5,349.2282],
[0.5, 329.6276],
[0.5,293.6648],
[2, 523.2511],
[1,391.9954],
[0.5,349.2282],
[0.5, 329.6276],
[0.5,293.6648],
[2, 523.2511],
[1,391.9954],
[0.5,349.2282],
[0.5, 329.6276],
[0.5,349.2282],
[3,293.6648]

In [47]: #clear
music = np.array([])

for note in notes:
music = np.hstack((music, make_note(note[1],duration=0.5*note[0])))
ipd.Audio(music,rate=DEFAULT_RATE)

Out [47] : <IPython.lib.display.Audio object>

2.0.8 Let’s listen to movie sound clips

In [48]: # Name the movie!
ipd.Audio("swnotry.wav")

Out [48]: <IPython.lib.display.Audio object>

In [49]: # Name the movie!
ipd.Audio("honest.wav")

Out [49]: <IPython.lib.display.Audio object>

14

2.0.9 Inspect the type of the data in music_data

In [50]: # scipy.io.wavfile.read: return the sample rate (in samples/sec) and data from a WAV fi1

filename = "honest.wav"
rate, music_data = wav.read(filename)
print("The sound has rate (in samples per second) = ", rate)

print("The data has", len(music_data), "sample points")
print (type(music_data))

The sound has rate (in samples per second) = 11025
The data has 32470 sample points
<class 'numpy.ndarray'>

We can also play the music_data array obtained using wav.read:
sound = np.array(music_data,dtype=float)

plt.plot(sound)

And we use the same rate to play the audio

ipd.Audio(sound, rate=rate)

In [61]: #clear
sound = np.array(music_data,dtype=float)
plt.plot(sound)
ipd.Audio(sound, rate=rate)

Out [51] : <IPython.lib.display.Audio object>

150

140

130

120

110

0 5000 10000 15000 20000 25000 30000

15

2.0.10 Change the speed of the sound

Make it twice as fast

In [52]: #clear
ipd.Audio(sound, rate=2*rate)

Out [52] : <IPython.lib.display.Audio object>
Make it twice as slow

In [63]: #clear
ipd.Audio(sound, rate=0.5*rate)

Out [63]: <IPython.lib.display.Audio object>

2.0.11 Add noise to the sound

Let’s modify at random some of the elements of the numpy array.
Use the function array_add_noise to create the variable noisy_sound
noisy_sound = array_add_noise(sound, ...)
Choose the probability and the noise level

In [64]: #clear
noise_level
prob = 0.4
noisy_sound = array_add_noise(sound,prob,noise_level,inplace=False)

0.01*min (sound)

Then you can plot and play:
plt.plot(noisy_sound)
ipd.Audio(noisy_sound, rate=rate)

In [55]: #clear
plt.plot(noisy_sound)
ipd.Audio(noisy_sound, rate=rate)

Out [65]: <IPython.lib.display.Audio object>

16

150 1

140

130

110

D 5000 10000 15000 20000 25000 30000

2.0.12 Scramble the sound!

Check this one out! You can play with the number of splits.

In [56]: split_sound = np.array_split(sound, 8)
np.random.shuffle(split_sound)
flat_list = [item for sublist in split_sound for item in sublist]

In [67]: ipd.Audio(np.array(flat_list), rate=rate)

Out [57] : <IPython.lib.display.Audio object>

2.0.13 Combine two different sounds

Let’s have fun with these audio clips!

In [58]: filenamel = "odds.wav"
srl, datal = wav.read(filenamel)
soundl = np.array(datal,dtype=float)

In [59]: ipd.Audio(datal,rate=srl)
Out [59]: <IPython.lib.display.Audio object>

In [60]: filename2 = "pass.wav"
sr2, data2 = wav.read(filename2)
sound2 = np.array(data2,dtype=float)

17

In [61]: ipd.Audio(data2,rate=sr2)
Out[61]: <IPython.lib.display.Audio object>

In [62]: data_combined = np.hstack((0.01*soundl,sound2))
print(datal.shape, data2.shape,data_combined.shape)
plt.plot(data_combined)

(245376,) (65160,) (310536,)

In [63]: # ipd.Audio(data_combined[100000:],rate=(sri+sr2)/2)

We had to cheat and modify the magnitude of the first sound, so that we could hear both with
similar volume. We also had to modify the rate, here using the average. Can you think of better
ways to manipulate these two arrays to get something interesting?

18

	Some introductory functions
	List comprehensions
	Write the function scale
	Write the function add_2:
	Write the function add_scale_2:
	How can you obtain the same result using numpy arrays?
	Helper function add_noise
	Create the function array_add_noise

	Let's start playing with sounds
	Create a sinusoidal sound
	Create a music note
	Write a function make_note
	Modify the function make_note so that it parabolically decays to zero over the time duration of the sound
	Make music
	We can make "real" music :-)
	Name the music!
	Let's listen to movie sound clips
	Inspect the type of the data in music_data
	Change the speed of the sound
	Add noise to the sound
	Scramble the sound!
	Combine two different sounds

