
Cost of LU factorization
!
"#$

%
& = 1

2* * + 1

!
"#$

%
&, = 1

6* * + 1 2* + 1

Side note:

Example

1)
2)
3)
4)

5)

A)1,2,3
B)1,2,3,5
C)1,3
D)1,2,3,4,5
E)4,5

Solving linear systems
In general, we can solve a linear system of equations following the steps:

1) Factorize the matrix ! : ! = #$ (complexity %('())

2) Solve # * = + (complexity %(',))

3) Solve $ - = * (complexity %(',))

But why should we decouple the factorization from the actual solve?
(Remember from Linear Algebra, Gaussian Elimination does not
decouple these two steps…)

What can go wrong with the previous
algorithm?

! =
2 8
1 &

4 1
3 3

1 2
1 3

6 2
4 2

* =
2 8
0 0

4 1
0 0

0 0
0 0

0 0
0 0

, =
1 0
0.5 0

0 0
0 0

0.5 0
0.5 0

0 0
0 0

!− 012321 =
2 8
1 4

4 1
1 2.5

1 −2
1 −1

4 1.5
2 1.5

012321 =
4 2 0.5
4 2 0.5
4 2 0.5

The next update for the lower triangular matrix will result in a
division by zero! LU factorization fails.

What can we do to get something like an LU factorization?

Demo “Little c”

Pivoting
Approach:
1. Swap rows if there is a zero entry in the diagonal
2. Even better idea: Find the largest entry (by absolute value) and

swap it to the top row.

The entry we divide by is called the pivot.

Swapping rows to get a bigger pivot is called (partial) pivoting.

!"" #"$
#$" %$$ = '"" ("$

'"")$")$"("$ + +$$,$$

Find the largest entry (in magnitude)

Linear System of Equations -

Conditioning

Numerical experiments

Input has uncertainties:

• Errors due to representation with finite precision

• Error in the sampling

Once you select your numerical method , how much error
should you expect to see in your output?

Is your method sensitive to errors (perturbation) in the input?

Demo “HilbertMatrix-ConditionNumber”

Solve 𝑨 𝒙 = 𝒃 for 𝒙

𝒃 + 𝑎 ∗ 10−6 (𝑎 ∈ 0,1) 𝒃 + 𝑎 ∗ 10−4 (𝑎 ∈ 0,1)

Is your method sensitive to errors (perturbation) in the input?
How much noise can we add to the input data?
How can we define “little” amount of noise? Should be relative with the
magnitude of the data.

Sensitivity of Solutions of Linear Systems
Suppose we start with a non-singular system of linear equations 𝑨 𝒙 = 𝒃.

We change the right-hand side vector 𝒃 (input) by a small amount Δ𝒃.

How much the solution 𝒙 (output) changes, i.e., how large is Δ𝒙?

Sensitivity of Solutions of Linear Systems

Sensitivity of Solutions of Linear Systems

We can also add a perturbation to the matrix 𝑨 (input) by a small

amount 𝑬, such that

(𝑨 + 𝑬) ෝ𝒙 = 𝒃

and in a similar way obtain:

Δ𝒙

𝒙
≤ 𝑨−1 𝑨

𝑬

𝑨

Condition number

Demo “HilbertMatrix-ConditionNumber”

The condition number is a measure of sensitivity of solving a linear system

of equations to variations in the input.

The condition number of a matrix 𝑨:

𝑐𝑜𝑛𝑑 𝑨 = 𝑨−1 𝑨

Recall that the induced matrix norm is given by

𝑨 = max
𝒙 =1

𝑨𝒙

And since the condition number is relative to a given norm, we should be

precise and for example write:

𝑐𝑜𝑛𝑑2 𝑨 or 𝑐𝑜𝑛𝑑∞ 𝑨

Iclicker question

Give an example of a matrix that is very well-conditioned (i.e.,

has a condition number that is good for computation). Select

the best possible condition number(s) of a matrix?

A) 𝑐𝑜𝑛𝑑 𝑨 < 0

B) 𝑐𝑜𝑛𝑑 𝑨 = 0
C) 0 < 𝑐𝑜𝑛𝑑 𝑨 < 1
D) 𝑐𝑜𝑛𝑑 𝑨 = 1
E) 𝑐𝑜𝑛𝑑 𝑨 = large numbers

Condition number

Δ𝒙

𝒙
≤ 𝑐𝑜𝑛𝑑 𝑨

Δ𝒃

𝒃

Small condition numbers mean not a lot of error amplification. Small

condition numbers are good!

The identity matrix should be well-conditioned:

𝑰 = max
𝒙 =1

𝑰 𝒙 = 1

It turns out that this is the smallest possible condition number:

𝑐𝑜𝑛𝑑 𝑨 = 𝑨−1 𝑨 ≥ 𝑨−1𝑨 = 𝑰 = 1

If 𝑨−1 does not exist, then 𝑐𝑜𝑛𝑑 𝑨 = ∞ (by convention)

Demo “HilbertMatrix-ConditionNumber”

Recall Induced Matrix Norms

𝑨 1 = max
𝑗

𝑖=1

𝑛

𝐴𝑖𝑗

𝑨 ∞ = max
𝑖

𝑗=1

𝑛

𝐴𝑖𝑗

𝑨 2 = max
𝑘

𝜎𝑘

𝜎𝑘 are the singular value of the matrix 𝑨

Maximum absolute column sum of the matrix 𝑨

Maximum absolute row sum of the matrix 𝑨

Iclicker question

A) 1
B) 50
C) 100
D) 200

Demo “HilbertMatrix-ConditionNumber”

About condition numbers

1. For any matrix 𝑨, 𝑐𝑜𝑛𝑑 𝑨 ≥1

2. For the identity matrix 𝑰, 𝑐𝑜𝑛𝑑 𝑰 = 1

3. For any matrix 𝑨 and a nonzero scalar 𝛾, 𝑐𝑜𝑛𝑑 𝛾𝑨 = 𝑐𝑜𝑛𝑑 𝑨

4. For any diagonal matrix 𝑫, 𝑐𝑜𝑛𝑑 𝑫 =
𝒎𝒂𝒙 𝑑𝒊

𝒎𝒊𝒏 𝑑𝒊

5. The condition number is a measure of how close a matrix is to being

singular: a matrix with large condition number is nearly singular,

whereas a matrix with a condition number close to 1 is far from being

singular

6. The determinant of a matrix is NOT a good indicator is a matrix is near

singularity

Iclicker question

The need for pivoting depends on whether the matrix is

singular.

A) True

B) False

A)
B)
C)
D)

Condition Number of Orthogonal

Matrices

What is the 2-norm condition number of an orthogonal matrix A?

𝑐𝑜𝑛𝑑 𝑨 = 𝑨−1
𝟐

𝑨 𝟐 = 𝑨𝑻
𝟐

𝑨 𝟐 = 1

That means orthogonal matrices have optimal conditioning.

They are very well-behaved in computation.

Residual versus error

Our goal is to find the solution 𝒙 to the linear system of equations 𝑨 𝒙 = 𝒃

Let us recall the solution of the perturbed problem

Demo

Residual versus error

Residual versus error

𝒓

𝑨 ෝ𝒙
≤ 𝑐 𝜖𝑚

Where 𝑐 is large without pivoting and small with partial pivoting.

Therefore, Gaussian elimination with partial pivoting yields small relative

residual regardless of conditioning of the system.

Iclicker question

When solving a system of linear equations via LU with

partial pivoting, which of the following is guaranteed to

be small?

A) Relative residual:
𝒓

𝑨 𝒙

B) Relative error:
Δ𝒙

𝒙

C) Neither one of them

D) Both of them

Demo “Rule of Thumb on Conditioning”

Residual versus error

Let us first obtain the norm of the error:

Residual versus error

Let us first obtain the norm of the error:

Rule of thumb for conditioning

Suppose we want to find the solution 𝒙 to the linear system of equations

𝑨 𝒙 = 𝒃 using LU factorization with partial pivoting and backward/forward

substitutions.

Suppose we compute the solution ෝ𝒙.

If the entries in 𝑨 and 𝒃 are accurate to S decimal digits,

and 𝑐𝑜𝑛𝑑 𝑨 = 𝟏𝟎𝑾,

then the elements of the solution vector ෝ𝒙 will be accurate to about

𝑆 − 𝑊
decimal digits

Iclicker question

A) 3

B) 10

C) 13

D) 16

E) 32

Sparse Systems

Sparse Matrices
Some type of matrices contain many zeros.
Storing all those zero entries is wasteful!

How can we efficiently store large
matrices without storing tons of zeros?

• Sparse matrices (vague definition): matrix with few non-zero entries.
• For practical purposes: an !×# matrix is sparse if it has $ min !, #

non-zero entries.
• This means roughly a constant number of non-zero entries per row and

column.
• Another definition: “matrices that allow special techniques to take advantage

of the large number of zero elements” (J. Wilkinson)

Sparse Matrices: Goals

• Perform standard matrix computations economically, i.e.,
without storing the zeros of the matrix.

• For typical Finite Element and Finite Difference matrices, the number of
non-zero entries is ! "

Sparse Matrices: MP example

Sparse Matrices
EXAMPLE:

Number of operations required to add two square dense matrices:
! "#

Number of operations required to add two sparse matrices $ and %:
! nnz $ + nnz(%)

where nnz , = number of non-zero elements of a matrix ,

Popular Storage Structures

Dense (DNS)

!"ℎ$%& = ()*+,,).+/)

• Simple
• Row-wise
• Easy blocked formats
• Stores all the zeros

Row 0 Row 1 Row 2 Row 3

Coordinate (COO)

• Simple
• Does not store the zero elements
• Not sorted
• row and col: array of integers
• data: array of doubles

Example

How many integers are stored in COO format
(! has dimensions "×")?

A) ""$
B) "
C) 2 ""$
D) "&
E) 2 "

Example

A) 56 bytes
B) 72 bytes
C) 96 bytes
D) 120 bytes
E) 144 bytes

Compressed Sparse Row (CSR)

Compressed Sparse Row (CSR)

• Does not store the zero elements
• Fast arithmetic operations between sparse matrices, and fast matrix-

vector product
• col: contain the column indices (array of !!" integers)
• data: contain the non-zero elements (array of !!" doubles)
• rowptr: contain the row offset (array of ! + 1 integers)

Example - CSR format

	9-Linear-Systems-inclass
	Binder1.pdf
	10-Conditioning-inclass
	11-Sparse-Matrices-inclass

