Eigenvalues and Eigenvectors

Power Iteration

$$\begin{array}{c}
\chi_{0} = & \Omega_{1} & U_{1} + \alpha_{2} & U_{2} - \cdots + \alpha_{n} & U_{n} \\
\chi_{k} = & (\lambda_{1})^{k} \left[\alpha_{1} u_{1} + \alpha_{2} \left(\frac{\lambda_{2}}{\lambda_{1}} \right)^{k} u_{2} + \cdots + \alpha_{n} \left(\frac{\lambda_{n}}{\lambda_{1}} \right)^{k} u_{n} \right]$$
Assume that $\alpha_{1} \neq 0$, the term $\alpha_{1} u_{1}$ dominates the others when k is very large.
Since $|\lambda_{1}| > |\lambda_{2}|$, we have $\left(\frac{\lambda_{2}}{\lambda_{1}} \right)^{k} \ll 1$ when k is large
Hence, as k increases, x_{k} converges to a multiple of the first eigenvector u_{1} , i.e.,
 $|\lambda_{1}| > |\lambda_{2}| > |\lambda_{5}| \cdots > |\lambda_{n}|$
 $|\lambda_{n}| > |\lambda_{2}| > |\lambda_{5}| \cdots > |\lambda_{n}|$
 $|\lambda_{n}| > |\lambda_{2}| > |\lambda_{5}| \cdots > |\lambda_{n}|$

How can we now get the eigenvalues?

(A x) = (

If \boldsymbol{x} is an eigenvector of \boldsymbol{A} such that

then how can we evaluate the corresponding eigenvalue λ ?

vector

 $x.Ax = \lambda x.x$ $\lambda = \underbrace{\times \cdot A \times}_{\times \cdot \times}$ or $\lambda = \frac{x' A(x)}{x^T x}$ Rayleigh wefficient

vector

Power Iteration

$$X_{0} = \frac{x}{x} = x_{0}$$

for $i = 1, 2, ...,$
$$X = A \times \longrightarrow [1 \times 1] \longrightarrow Growing$$
$$\lambda = \frac{x}{x} \frac{A \times x}{x^{T} \times x}$$

Normalized Power Iteration

$$\boldsymbol{x}_{k} = (\lambda_{1})^{k} \left[\alpha_{1} \boldsymbol{u}_{1} + \alpha_{2} \left(\frac{\lambda_{2}}{\lambda_{1}} \right)^{k} \boldsymbol{u}_{2} + \dots + \alpha_{n} \left(\frac{\lambda_{n}}{\lambda_{1}} \right)^{k} \boldsymbol{u}_{n} \right]$$

 $x_0 = \text{arbitrary nonzero vector}$ $x_0 = \frac{x_0}{\|x_0\|}$

for
$$k = 1, 2, ...$$

 $y_k = A x_{k-1}$
 $x_k = \frac{y_k}{\|y_k\|}$ is normalized

$$\lambda = \frac{X_{k}^{T} A X_{k}}{X_{k}^{T} X_{k}}$$

Normalized Power Iteration

$$x_{k} = (\lambda_{1})^{k} \begin{bmatrix} \alpha_{1}u_{1} + \alpha_{2} \left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} u_{2} + \dots + \alpha_{n} \left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k} u_{n} \end{bmatrix}$$

$$x_{0} = \alpha \begin{bmatrix} u_{1} + \dots + \alpha_{n} \\ u_{n} \end{bmatrix} \begin{bmatrix} \alpha_{1} = 0 \end{bmatrix}$$
What if the starting vector x_{0} have no component in the dominant eigenvector u_{1} ($\alpha_{1} = 0$)?

$$x_{k} = \alpha_{2} \lambda_{2}^{k} U_{2} + \lambda_{1}^{k} \begin{bmatrix} \alpha_{3} \left(\frac{\lambda_{n}}{\lambda}\right)^{k} U_{3} + \dots + \alpha_{n} \left(\frac{\lambda_{n}}{\lambda}\right)^{k} U_{n} \end{bmatrix}$$

$$k \to 0$$

$$x_{k} \to \alpha_{2} U_{2} \lambda_{1}^{k}$$
In theory (in infinite precision)

$$x_{k} \to \alpha_{2} (u_{2}) \lambda_{1}^{k}$$
In practice:

$$y_{p} = x_{1}^{k} u_{1}^{k} = 0$$

Normalized Power Iteration $\lambda_1 \ge \lambda_2$

$$\boldsymbol{x}_{k} = (\lambda_{1})^{k} \left[\alpha_{1} \boldsymbol{u}_{1} + \alpha_{2} \left(\frac{\lambda_{2}}{\lambda_{1}} \right)^{k} \boldsymbol{u}_{2} + \dots + \alpha_{n} \left(\frac{\lambda_{n}}{\lambda_{1}} \right)^{k} \boldsymbol{u}_{n} \right]$$

What if the first two largest eigenvalues (in magnitude) are the same, $|\lambda_1| = |\lambda_2|$?

1) λ_1 and λ_2 both positives $\chi_{\mathbf{k}} \rightarrow \chi^{\mathbf{k}} \alpha_{1} u_{1} + \chi^{\mathbf{k}} \alpha_{2} u_{2}$ $\lambda_1 = \lambda_2 = \lambda$ $\rightarrow \alpha_1 u_1 + \alpha_2 u_2 \longrightarrow L$ combination of u_1 XK - $\rightarrow \lambda = \lambda_1 = \lambda_2 = \frac{X^T A X}{\sqrt{T} X}$

Normalized Power Iteration

$$\boldsymbol{x}_{k} = (\lambda_{1})^{k} \left[\alpha_{1} \boldsymbol{u}_{1} + \alpha_{2} \left(\frac{\lambda_{2}}{\lambda_{1}} \right)^{k} \boldsymbol{u}_{2} + \dots + \alpha_{n} \left(\frac{\lambda_{n}}{\lambda_{1}} \right)^{k} \boldsymbol{u}_{n} \right]$$

What if the first two largest eigenvalues (in magnitude) are the same, $|\lambda_1| = |\lambda_2|$?

odd 2) λ_1 and λ_2 both negative $\times_{k} \rightarrow + |\lambda|^{k} (\alpha \mu_{1} + \alpha_{2} \, \mu_{2})$ even flipped signs $X_{x} \rightarrow \text{onverge L.C.}(u_{1}),(u_{2})$ (+). Xr + XK [λ] = |λ, [= |λe]

Normalized Power Iteration

$$\boldsymbol{x}_{k} = (\lambda_{1})^{k} \left[\alpha_{1} \boldsymbol{u}_{1} + \alpha_{2} \left(\frac{\lambda_{2}}{\lambda_{1}} \right)^{k} \boldsymbol{u}_{2} + \dots + \alpha_{n} \left(\frac{\lambda_{n}}{\lambda_{1}} \right)^{k} \boldsymbol{u}_{n} \right]$$

What if the first two largest eigenvalues (in magnitude) are the same, $|\lambda_1| = |\lambda_2|$? λ,>0 λ2 <0 (3) λ_1 and λ_2 opposite signs $X_{k} \rightarrow \lambda_{1}^{k} \alpha_{1} u_{2} + \lambda_{2}^{k} \alpha_{2} u_{2}$ k is odd K'is even $\pm \lambda^k (\alpha_1 u_1 - \alpha_2 u_2)$ $\lambda^{k}(\alpha_{1}u_{1}+\alpha_{2}u_{2})$ >> no longer have vonvergence no longer have h '-ail

Potential pitfalls

- 1. Starting vector $\mathbf{x_0}$ may have no component in the dominant eigenvector $\mathbf{u}_1(\alpha_1 = 0)$. This is usually unlikely to happen if $\mathbf{x_0}$ is chosen randomly, and in practice not a problem because rounding will usually introduce such component.
- 2. Risk of eventual overflow (or underflow): in practice the approximated eigenvector is normalized at each iteration (Normalized Power Iteration)
- 3. First two largest eigenvalues (in magnitude) may be the same: $|\lambda_1| = |\lambda_2|$. In this case, power iteration will give a vector that is a linear combination of the corresponding eigenvectors:
 - If signs are the same, the method will converge to correct magnitude of the eigenvalue. If the signs are different, the method will not converge.
 - This is a "real" problem that cannot be discounted in practice.

exact u $\|e\| = O\left(\left|\frac{\lambda_2}{\lambda_1}\right|^{-1}\right)$ Error 🐠 $\boldsymbol{x}_{k} = (\lambda_{1})^{k} \left[\alpha_{1} \boldsymbol{u}_{1} + \alpha_{2} \left(\frac{\lambda_{2}}{\lambda_{1}} \right)^{k} \boldsymbol{u}_{2} + \dots + \alpha_{n} \left(\frac{\lambda_{n}}{\lambda_{1}} \right)^{k} \boldsymbol{u}_{n} \right]$ $\frac{\chi_{k}}{\lambda_{i}^{k}\alpha_{i}} = (U_{i}) + \left(\frac{\alpha_{2}}{\alpha_{i}} \sqrt{\frac{\lambda_{2}}{\lambda_{i}}}\right)^{k} U_{2} +$ $\frac{\alpha_{z}}{\alpha_{1}}\left(\frac{\lambda_{z}}{\lambda_{1}}\right)U_{z}+\left(\frac{\alpha_{3}}{\alpha_{1}}\right)U_{z}+\left(\frac{\lambda_{3}}{\lambda_{1}}\right)U_{z}+$ λK Q, dominan neglect $\|\underline{e}_{k}\| = \frac{\alpha_{z}}{\alpha_{1}} \quad \frac{\lambda_{z}}{\lambda_{1}} \quad \|\underline{u}_{z}\|$ $\left(\frac{\lambda_z}{\lambda_z}\right) \frac{U_2}{2}$ e_k=

Convergence and error

$$\|e_{k}\| = O\left(\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{k}\right)$$

$$\|e_{k+1}\| = \left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{k+1} = \left|\frac{\lambda_{2}}{\lambda_{1}}\right| = constant$$

$$\|e_{k}\| = \left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{k} \|e_{k}\| \rightarrow linear convergence$$

$$\|e_{k}\| = \left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{k} \|e_{0}\|$$

Example $A = 4 - \frac{1}{2}$

Suppose you are given a matrix with eigenvalues 3, 4, and 5. You use (normalized) power iteration to approximate one of the eigenvectors $\|\mathbf{x}\|$. For simplicity, assume $\|\mathbf{x}\| = 1$. Your initial guess \mathbf{x}_0 has a norm of the error $\|\mathbf{x} - \mathbf{x}_0\| = 0.3$.

How big will the error be after three rounds of normalized power iteration?

(Note that for normalized power iteration, all vectors under consideration have norm 1, so the absolute and the relative error are the same.)

$$\|e_{0}\| = \|x - x_{0}\| = 0.3$$

$$\|e_{1}\| = \|x - x_{1}\| = \frac{\lambda_{2}}{\lambda_{1}}\|e_{0}\| = \frac{4}{5}(0.3)$$

$$\|e_{3}\| = \frac{\lambda_{2}}{\lambda_{1}}\|e_{1}\|$$

$$\|e_{2}\| = \frac{\lambda_{2}}{\lambda_{1}}\|e_{2}\|$$

$$\|e_{3}\| = \frac{\lambda_{2}}{\lambda_{2}}\|e_{2}\|$$

$$\|e_{3}\| = 0.1536$$

Iclicker question

The matrix
$$A = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$$
 has
eigenvalues (4,2) and corresponding
eigenvectors $u_1 = (1,1)$ and
 $u_2 = (-1,1)$.
 $\lambda_1 = 4 \longrightarrow 0_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} u_1 \\ x_0 \end{pmatrix}$
 $\lambda_2 = 2 \longrightarrow 0_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$

♠

Suppose we want to use the normalized power iteration, starting from (0, 5, 0)

- $x_0 = (-0.5,0)$. Select the correct statement
- A) Normalized power iteration will not converge
- B) Normalized power iteration will converge to the eigenvector
 corresponding to the eigenvalue 2.
- C) Normalized power iteration will converge to the eigenvector corresponding to the eigenvalue 4.

(Normalized)
Power iteration
$$\longrightarrow X_{k+1} = [A \times x]$$
 (So)
Converges to multiple of eigenvector (U_1)
corresponding to $\lambda_1 \rightarrow$ bargest eigenvalue
in magnitude
Rayleigh coefficient : $\lambda = \frac{x^T A \times x}{x^T \times x}$
What if I want another eigenvalue?
 $|\lambda_1| > |\lambda_2| > \cdots > |\lambda_n|$

Suppose \boldsymbol{x} is an eigenvector of \boldsymbol{A} such that

 $A x = \lambda x$

 $\lambda, x \rightarrow A$

What is an eigenvalue of A^{-1} ?

Think about this question...

Which code snippet is the best option to compute the smallest eigenvalue of the matrix A?

```
x = x0/la.norm(x0)
   x = x0/la.norm(x0)
   for k in range(30):
                                     for k in range(30):
                                  B)
                                       x = la.inv(A)@x
       x = la.solve(A, x)
A)
                                         x = x/la.norm(x)
       x = x/la.norm(x)
   x = x0/la.norm(x0)
J) for k in range(30):
       P, L, U = sla.lu(A)
       y = sla.solve_triangular(L, np.dot(P.T, x), lower=True)
       x = sla.solve triangular(U, y)
       x = x/la.norm(x)
  x = x0/la.norm(x0)
  P, L, U = sla.lu(A)
   for k in range(30):
       y = sla.solve triangular(L, np.dot(P.T, x), lower=True)
       x = sla.solve triangular(U, y)
       x = x/la.norm(x)
  I have no idea!
```

Inverse Power Method $X_{K+1} = A X_{K}$ XEHI - Xk+1 solve la.lu(A) factorize A = PLU $O(n^3)$ PLU XKHI = XK \longrightarrow solve for $y \longrightarrow O(n^2)$ Ly = PXK 2 \rightarrow solve for $X_{k+1} \longrightarrow O(n^2)$ 4 XKtI =

Suppose \boldsymbol{x} is an eigenvector of \boldsymbol{A} such that $\boldsymbol{A} = \lambda_1 \boldsymbol{x}$ and also \boldsymbol{x} is an eigenvector of **B** such that $B x = \lambda_2 x$. What is an eigenvalue of ---> کر ، × What is an eigenvalue of $(A + \frac{1}{2}B)^{-1}$? λ_2, X $(A+\underline{I}B)x = \lambda x$ $\frac{1}{\lambda} \times = (A + \frac{1}{z}B) \times$ $= \lambda_1 + \frac{1}{2}\lambda_2$ $\frac{1}{2} x = \frac{Ax}{2} + \frac{1}{2} BX$ $\frac{1}{\lambda} X = \lambda_1 X + \frac{1}{2} \lambda_2 X$ $\lambda_1 + \frac{1}{2} \lambda_2$ $= (\lambda_1 + \frac{1}{2} \lambda_2) \times$

Suppose x is an eigenvector of A such that $A = \lambda_1 x$ and also x is an eigenvector of B such that $B = \lambda_2 x$. What is an eigenvalue of

What is an eigenvalue of $A^2 + \sigma B$? $\lambda_{1} \times$ N2,× $(A^{*}+OB) \times = \lambda \times$ GR $Ax + UBx = \lambda x$ $\lambda_1^2 x + \nabla \lambda_2 x = \lambda x$ $\lambda_1 + \nabla \lambda_2$

Eigenvalues of a Shifted Inverse Matrix

Suppose the eigenpairs (x, λ) satisfy $Ax = \lambda x$.

 \rightarrow (A-UI) ? What is $\overline{\lambda}$? $(A-\sigma I) = \overline{\lambda} x$ = N-C $\frac{1}{\overline{X}} \times = (A - GI) \times \frac{1}{\overline{X}}$ = Ax - JI x centalur $\frac{1}{2} \times = \lambda \times - \mathcal{Q} \times = (\lambda - \mathcal{Q}) \times$ licental

• define
$$T$$
.
• random ≥ 0 / • normalize $x = \times 0$ /($\times 0$)
• $B = (A - \sigma I)$
• $P_{i}L_{i}U = |a \cdot lu(A - \sigma I)$
• $P_{i}L_{i}U = |a \cdot lu(A - \sigma I)$
• $A = \frac{x}{x} \frac{A}{x}$
for $i = 1, 2$.
 $Ly = P^{T} \times \longrightarrow$ solve for Y ($O(r^{2})$)
 $U \times new = 4$ \longrightarrow solve for X_{new} ($O(r^{2})$)
 $X = X_{new} / || \times new ||$
 $X :$ sigenvector corresponding λ which is the us A
closer to T

