Eigenvalues and Eigenvectors

Power Iteration

$$
x_{0}=\alpha_{1} u_{1}+\alpha_{2} u_{2} \cdots+\alpha_{n} u_{n}
$$

$$
\boldsymbol{x}_{k}=\left(\lambda_{1}\right)^{k}\left[\alpha_{1} \boldsymbol{u}_{1}+\alpha_{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} \boldsymbol{u}_{2}+\cdots+\alpha_{n}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k} \boldsymbol{u}_{n}\right]
$$

Assume that $\alpha_{1} \neq 0$, the term $\alpha_{1} \boldsymbol{u}_{1}$ dominates the others when k is very large.

Since $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|$, we have $\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} \ll 1$ when k is large
Hence, as k increases, \boldsymbol{x}_{k} converges to a multiple of the first eigenvector \boldsymbol{u}_{1}, i.e.,
$\left.\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\left|\lambda_{3}\right| \ldots\right\rangle\left|\lambda_{n}\right|$

$$
u_{1}, \lambda_{1}
$$

How can we now get the eigenvalues?

If \boldsymbol{x} is an eigenvector of \boldsymbol{A} such that

then how can we evaluate the corresponding eigenvalue λ ?

$$
\begin{aligned}
& x \cdot A x=\lambda x \cdot x \\
& \lambda=\frac{x \cdot A x}{x \cdot x} \quad \text { or } \frac{\lambda=\frac{x^{\top} A(x)}{x^{\top} x}}{\text { Rayleigh efficient }}
\end{aligned}
$$

Power Iteration

$$
\begin{aligned}
& x_{0}= \\
& x=x_{0} \\
& \text { for } i=1,2, \cdots \\
& \quad x=A x \longrightarrow\|x\| \rightarrow \text { growing } \\
& \lambda=\frac{x^{\top} A x}{x^{\top} x}
\end{aligned}
$$

Normalized Power Iteration

$$
\boldsymbol{x}_{k}=\left(\lambda_{1}\right)^{k}\left[\alpha_{1} \boldsymbol{u}_{1}+\alpha_{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} \boldsymbol{u}_{2}+\cdots+\alpha_{n}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k} \boldsymbol{u}_{n}\right]
$$

$\boldsymbol{x}_{\mathbf{0}}=$ arbitrary nonzero vector
$x_{0}=\frac{x_{0}}{\left\|x_{0}\right\|}$
for $k=1,2, \ldots$

$$
\begin{aligned}
\boldsymbol{y}_{k} & =\boldsymbol{A} \boldsymbol{x}_{k-1} \\
\boldsymbol{x}_{k} & =\frac{\boldsymbol{y}_{k}}{\left\|\boldsymbol{y}_{k}\right\|}
\end{aligned}
$$

is normalized
$\lambda=\frac{x_{k}^{\top} A x_{k}}{x_{k}^{\top} x_{k}}$

Normalized Power Iteration

$$
* \alpha_{1} \neq 0
$$

$$
\begin{array}{r}
\boldsymbol{x}_{k}=\left(\lambda_{1}\right)^{k}\left[\alpha_{1} \boldsymbol{u}_{1}+\alpha_{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} \boldsymbol{u}_{2}+\cdots+\alpha_{n}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k} \boldsymbol{u}_{n}\right] \\
\mathbf{X}_{0}=\alpha_{1}+\cdots+\alpha_{n} u_{n} \quad \alpha_{1}=0 ?
\end{array}
$$

What if the starting vector $\boldsymbol{x}_{\mathbf{0}}$ have no component in the dominant eigenvector $\boldsymbol{u}_{1}\left(\alpha_{1}=0\right)$?

$$
\begin{aligned}
& x_{k}=\underline{\underline{\alpha_{2}} u_{2}^{k}}+\underbrace{\lambda_{1}^{k}\left[\alpha_{3}\left(\frac{\lambda_{3}}{\lambda_{1}}\right)^{k} u_{3}+\cdots+\alpha_{n}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k} u_{n}\right]} \\
& k \rightarrow \infty \longrightarrow \lambda_{2}, u_{2} \xrightarrow{\text { In theory (in infinite precision) }} \\
& x_{k} \rightarrow \alpha_{2} u_{2} \lambda^{k} \\
& \rightarrow \text { power iteration will } \\
& \text { converge } \underline{u}_{2} \\
& \text { In practice: } \\
& \rightarrow \text { P.I. will converge to } \underset{\sim}{u_{1}} \text { : }
\end{aligned}
$$

Normalized Power Iteration

$$
\boldsymbol{x}_{k}=\left(\lambda_{1}\right)^{k}\left[\alpha_{1} \boldsymbol{u}_{1}+\alpha_{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} \boldsymbol{u}_{2}+\cdots+\alpha_{n}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k} \boldsymbol{u}_{n}\right]
$$

What if the first two largest eigenvalues (in magnitude) are the same, $\left|\lambda_{1}\right|=\left|\lambda_{2}\right|$?

1) λ_{1} and λ_{2} both positives

$$
\begin{aligned}
& x_{k} \rightarrow \lambda^{2} \alpha_{1} u_{1}+\lambda^{k} \alpha_{2} u_{2} \quad \lambda_{1}=\lambda_{2}=\lambda \\
& \frac{x_{k}}{\lambda^{k}} \rightarrow \alpha_{1} u_{1}+\alpha_{2} u_{2} \rightarrow L \text {. combination o } u_{1} u_{1} u_{2} \\
& \rightarrow \lambda=\lambda_{1}=\lambda_{2}=\frac{x^{\top} A x}{x^{\top} x}
\end{aligned}
$$

Normalized Power Iteration

$$
\boldsymbol{x}_{k}=\left(\lambda_{1}\right)^{k}\left[\alpha_{1} \boldsymbol{u}_{1}+\alpha_{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} \boldsymbol{u}_{2}+\cdots+\alpha_{n}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k} \boldsymbol{u}_{n}\right]
$$

What if the first two largest eigenvalues (in magnitude) are the same, $\left|\lambda_{1}\right|=\left|\lambda_{2}\right|$?

$$
\lambda_{1} \text { and } \lambda_{2} \text { both negative }
$$

$$
\left.x_{k} \rightarrow \pm \pm \lambda\right)^{x_{1}}\left(\alpha \mu_{1}+\alpha_{2} u_{2}\right)
$$

$$
K_{\text {even }}^{\prime}
$$

$x_{k} \rightarrow$ converge L.C. (\underline{u}_{1}, $\underline{u}_{2} \oplus$ flipped signs

$$
-x_{k}
$$

$$
\lambda=\frac{x^{\top} A x}{x^{\top} x} \quad|\lambda|=\left|\lambda_{1}\right|=\left|\lambda_{2}\right|
$$

$$
+x_{k}
$$

Normalized Power Iteration

$$
\boldsymbol{x}_{k}=\left(\lambda_{1}\right)^{k}\left[\alpha_{1} \boldsymbol{u}_{1}+\alpha_{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} \boldsymbol{u}_{2}+\cdots+\alpha_{n}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k} \boldsymbol{u}_{n}\right]
$$

What if the first two largest eigenvalues (in magnitude) are the same, $\left|\lambda_{1}\right|=\left|\lambda_{2}\right|$?
(3) λ_{1} and λ_{2} opposite signs
$\lambda_{1}>0, \lambda_{2}<0$

$$
x_{k} \longrightarrow \lambda_{1}^{k} \alpha_{1} u_{2}+\lambda_{2}^{k} \alpha_{2} u_{2}
$$

Kis even
k is odd

$$
\lambda^{k}\left(\alpha_{1} u_{1}+\alpha_{2} \underline{u}_{2}\right)
$$

$$
\pm \lambda^{k}\left(\alpha_{1} u_{1}-\alpha_{2} u_{2}\right)
$$

\Rightarrow no longer have convergence no longer have λ

Potential pitfalls

1. Starting vector $\boldsymbol{x}_{\mathbf{0}}$ may have no component in the dominant eigenvector $\boldsymbol{u}\left(\alpha_{1}\right.$ $0)$. This is usually unlikely to happen if $\boldsymbol{x}_{\mathbf{0}}$ is chosen randomly, and in practice not a problem because rounding will usually introduce such component.
2. Risk of eventual overflow (or underflow): in practice the approximated eigenvector is normalized at each iteration (Normalized Power Iteration)
3. First two largest eigenvalues (in magnitude) may be the same $\left|\lambda_{1}\right|=\left|\lambda_{2}\right|$. In this case, power iteration will give a vector that is a linear combination of the corresponding eigenvectors:

- If signs are the same, the method will converge to correct magnitude of the eigenvalue. If the signs are different, the method will not converge.
- This is a "real" problem that cannot be discounted in practice.

$$
\begin{aligned}
& \text { Error un exact us } \\
& \boldsymbol{x}_{k}=\left(\lambda_{1}\right)^{k}\left[\alpha_{1} \boldsymbol{u}_{1}+\alpha_{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{\frac{k}{4}} \boldsymbol{u}_{2}+\cdots+\alpha_{n}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k} \boldsymbol{u}_{n}\right] \\
& \frac{x_{k}}{\lambda_{1}^{k} \alpha_{1}}=u_{1}+\left(\frac{\alpha_{2}}{\alpha_{1}}\right)\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} u_{2}+ \\
& \text { error }=\frac{x_{k}}{\lambda_{1}^{k} \alpha_{1}}-u_{1}=\underbrace{\left(\frac{\alpha_{2}}{\alpha_{1}}\right)\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} u_{2}+\underbrace{\left(\frac{\alpha_{3}}{\alpha_{1}}\right)\left(\frac{\lambda_{3}}{\lambda_{1}}\right)^{k} u_{3}+\ldots}_{\text {neglect }} \text {, }}_{\text {dominant }} \\
& \underset{\sim}{e_{k}}=\frac{\alpha_{2}}{\alpha_{1}}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k}{\underset{\sim}{u}}_{2}^{u_{2}} \quad\left\|{\underset{\sim}{e}}_{k}\right\|=\left|\frac{\alpha_{2}}{\alpha_{1}}\right|\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{k}\left\|u_{2}\right\|
\end{aligned}
$$

Convergence and error

$$
\begin{aligned}
& \left\|e_{k}\right\|=0\left(\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{k}\right) \\
& \frac{\left\|e_{k+1}\right\|}{\left\|e_{k}\right\|}=\frac{\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{k+1}}{\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{k}}=\left|\frac{\lambda_{2}}{\lambda_{1}}\right|=\text { constant } \\
& \left\|e_{k+1}\right\|=\left|\frac{\lambda_{2}}{\lambda_{1}}\right|\left\|e_{k}\right\| \\
& \left\|e_{k}\right\|=\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{k}\left\|e_{0}\right\|
\end{aligned}
$$

Example

$$
A=\left\{\begin{array}{l}
3 \longrightarrow \lambda_{3} \\
4 \longrightarrow \lambda_{2} \\
5 \longrightarrow \lambda_{1} \longrightarrow u_{1}
\end{array}\right.
$$

Suppose you are given a matrix with eigenvalues 3,4 , and 5 .
You use (normalized) power iteration to approximate one of the eigenvectors $\|\mathbf{x}\|$. For simplicity assume $\|\mathbf{x}\|=1$. Your initial guess \mathbf{x}_{0} has a norm of the error $\left\|\mathbf{x}-\mathbf{x}_{0}\right\|=0.3$.

$$
x_{0}=\longrightarrow\left\|x-x_{0}\right\|=0.3
$$

How big will the error be after three rounds of normalized power iteration?
(Note that for normalized power iteration, all vectors under consideration have norm 1, so the absolute and the relative error are the same.)

$$
\left\|e_{0}\right\|=\left\|x-x_{0}\right\|=0.3
$$

$$
\left\|e_{1}\right\|=\left\|x-x_{1}\right\|=\left|\frac{\lambda_{2}}{\lambda_{1}}\right|\left\|e_{0}\right\|=\frac{4}{5}(0.3)
$$

$$
\left\|e_{2}\right\|=\left|\frac{\lambda_{2}}{\lambda_{1}}\right|\left\|e_{1}\right\|
$$

$$
\left\|e_{3}\right\|=\left|\frac{\lambda_{2}}{\lambda_{1}}\right|\left\|e_{2}\right\|
$$

$$
\begin{aligned}
& \begin{array}{l}
\left\|e_{3}\right\|=\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{3}\left\|e_{0}\right\| \\
=\left(\frac{4}{5}\right)^{3} 0.3 \\
\left\|e_{3}\right\|=0.1536
\end{array}
\end{aligned}
$$

Iclicker question

The matrix $\boldsymbol{A}=\left(\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right)$ has eigenvalues (4,2) and corresponding eigenvectors $\boldsymbol{u}_{1}=(1,1)$ and $\boldsymbol{u}_{2}=(-1,1) . \quad \lambda_{1}=4 \rightarrow u_{1}=\left(\begin{array}{ll}\top & x_{0} \\ 1, & \end{array}\right.$

$$
\left.\lambda_{2}=2 \rightarrow u_{2}=\binom{-1}{1}-u_{1}\right)
$$

Suppose we want to use the normalized power iteration, starting from $x_{0}=(-0.5,0)$. Select the correct statement
A) Normalized power iteration will not converge
B) Normalized power iteration will converge to the eigenvector corresponding to the eigenvalue 2 .
C) Normalized power iteration will converge to the eigenvector corresponding to the eigenvalue 4.
(Normalized)
Power iteration $\longrightarrow x_{k+1}=|A| x_{k}$
Converges to multiple of eigenvector \underline{u}_{1} corresponding to $\lambda_{1} \rightarrow$ largest eigenvalue in magnitude
Rayleigh coefficient : $\lambda=\frac{x^{\top} A x}{x^{\top} x}$
What if I want another eigenvalue?

$$
\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\ldots>\left|\lambda_{n}\right|
$$

Suppose \boldsymbol{x} is an eigenvector of \boldsymbol{A} such that

$$
A x=\lambda x \quad \lambda, \times \rightarrow A
$$

What is an eigenvalue of \boldsymbol{A}^{-1} ?

$$
\begin{gathered}
A x=\lambda x \\
\frac{1}{\lambda} A x=x \\
\frac{1}{\lambda} x=A^{-1} x
\end{gathered}
$$

$\frac{1}{\lambda}$ is an eigenvalue of A^{-1}
$(\lambda) \rightarrow$ is the largest $\frac{1}{\lambda} ? \longrightarrow$ smallest

Inverse Power Method \qquad smallest eigenvalue
Previously we learned that we can use the Power Method to obtain the largest eigenvalue and corresponding eigenvector, by using the update

$$
\boldsymbol{x}_{k+1}=\boldsymbol{A} \boldsymbol{x}_{k}
$$

Suppose there is a single smallest eigenvalue of \boldsymbol{A}. With the previous ordering

$$
\begin{aligned}
& \text { Power } \\
& \text { method }\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq\left|\lambda_{3}\right| \geq \cdots>\left|\lambda_{n}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Power } \\
\text { method } \\
\text { Eggenvalues of } \\
A^{-1}
\end{array}\left|\frac{1}{\lambda_{n}}\right|>\left|\frac{1}{\lambda_{n-1}}\right|>\cdots \gg\left|\frac{1}{\lambda_{1}}\right| \geq\left|\lambda_{3}\right| \geq \cdots>\left|\lambda_{n}\right|
\end{aligned}
$$

Power method with A^{-1} will converge

$$
X_{k+1}=A^{-1} X_{k}
$$

Think about this question...

Which code snippet is the best option to compute the smallest eigenvalue of the matrix \boldsymbol{A} ?

```
    x = x0/la.norm(x0)
    for k in range(30):
A) x = la.solve(A, x)
    x = x/la.norm(x)
x = x0/la.norm(x0)
for k in range(30):
    x = la.inv(A)@x
    x = x/la.norm(x)
    x = x0/la.norm(x0)
C) for k in range(30):
    P, L, U = sla.lu(A)
    y = sla.solve_triangular(L, np.dot(P.T, x), lower=True)
    x = sla.solve_triangular(U, y)
    x = x/la.norm(x)
D) \(\begin{aligned} & x=x 0 / l a . \operatorname{norm}(x 0) \\ & \mathrm{P}, \mathrm{L}, \mathrm{U}=\operatorname{sla} \mathrm{lu}(\mathrm{A})\end{aligned}\)
for \(k\) in range(30):
y = sla.solve_triangular(L, np.dot(P.T, x), lower=True)
x = sla.solve_triangular(U, y)
\(\mathrm{x}=\mathrm{x} / \mathrm{la}\).norm(x)
```

E) I have no idea!

Inverse Power Method

$$
x_{k+1}=A^{-1} x_{k} \longrightarrow A x_{k+1}=x_{k}
$$

(1) factorize $A=P L U \quad \operatorname{la} \operatorname{lu}(A)$

$$
P L \frac{x_{k+1}}{y}=x_{k} \longrightarrow O\left(n^{3}\right)
$$

(2) $L y=P^{\top} x_{k}$
\longrightarrow solve for $y \rightarrow O\left(n^{2}\right)$
(3) $\cup x_{k+1}=y$
$\}$ solve for $x_{k+1} \longrightarrow O\left(n^{2}\right)$

Cost of computing eigenvalues using inverse power iteration $\quad A x_{k+1}=x_{k}$

 $\mathrm{x}=\mathrm{x} 0 / \mathrm{la}$. $\operatorname{norm}(\mathrm{x} 0)$

 $\mathrm{x}=\mathrm{x} 0 / \mathrm{la}$. $\operatorname{norm}(\mathrm{x} 0)$

 for k in range(30):

 for k in range(30):

 $\mathrm{x}=\mathrm{la} \cdot \operatorname{solve}(\mathrm{A}, \mathrm{x})$ $\mathrm{x}=\mathrm{x} / \mathrm{la} \cdot \operatorname{sorm}(\mathrm{x})$

 $\mathrm{x}=\mathrm{la} \cdot \operatorname{solve}(\mathrm{A}, \mathrm{x})$$\mathrm{x}=\mathrm{x} / \mathrm{la} \cdot \operatorname{sorm}(\mathrm{x})$}
$\mathrm{x}=\mathrm{x} 0 / \mathrm{la}$. $\operatorname{norm}(\mathrm{x} 0)$
for k in range (30):

$$
\mathrm{P}, \mathrm{~L}, \mathrm{U}=\mathrm{sla} . \operatorname{lu}(\mathrm{A})
$$

$$
y=\text { sla.solve_triangular(L, np.dot(P.T, x), lowe }=\text { True })
$$

$$
x \text { = sla.solve_triangular(U, y) }
$$

$$
x=x / l a \cdot \operatorname{norm}(x)
$$

$$
\begin{gathered}
x=x / \operatorname{la} \cdot \operatorname{norm}(x) \\
x=x 0 / l a \cdot \operatorname{norm}(x 0) \\
\hline P, L, U=\operatorname{sla} \ln (A) \\
\text { for } k \text { in range(30): }
\end{gathered}
$$

$$
y=\text { sla.solve_triangular(L, np.dot(P.T, x), Lower=True) }
$$

x = sla.solve_triangular(U, y)

$$
\mathrm{x}=\mathrm{x} / \mathrm{la} \cdot \operatorname{norm}(\mathrm{x})
$$

Suppose \boldsymbol{x} is an eigenvector of \boldsymbol{A} such that $\boldsymbol{A} \boldsymbol{x}=\lambda_{\mathbf{1}} \boldsymbol{x}$ nd also \boldsymbol{x} is an eigenvector of \boldsymbol{B} such that $\boldsymbol{B} \boldsymbol{x}=\lambda_{\mathbf{2}} \boldsymbol{x}$. What is an eigenvalue of What is an eigenvalue of $\left(\boldsymbol{A}+\frac{\mathbf{1}}{\mathbf{2}} \boldsymbol{B}\right)^{-1}$?

$$
A \rightarrow \lambda_{1}, \times
$$

$$
\begin{aligned}
&\left(A+\frac{1}{2} B\right)^{-1} x=\lambda x \\
& \frac{1}{\lambda} x=\left(A+\frac{1}{2} B\right) x \\
& \frac{1}{\lambda} x=\underbrace{A x}+\frac{1}{2} B x \\
& \frac{1}{\lambda} x=\lambda_{1} x+\frac{1}{2} \lambda_{2} x \\
&=\left(\lambda_{1}+\frac{1}{2} \lambda_{2}\right) x
\end{aligned}
$$

$$
B \rightarrow \lambda_{2}, x
$$

$$
\left(A+\frac{1}{2} B\right)^{-1} \longrightarrow \lambda, x
$$

$$
\int \frac{1}{\lambda}=\lambda_{1}+\frac{1}{2} \lambda_{2}
$$

$$
\lambda=\frac{1}{\lambda_{1}+\frac{1}{2} \lambda_{2}}
$$

Suppose \boldsymbol{x} is an eigenvector of \boldsymbol{A} such that $\boldsymbol{A} \boldsymbol{x}=\lambda_{\mathbf{1}} \boldsymbol{x}$ and also \boldsymbol{x} is an eigenvector of \boldsymbol{B} such that $\boldsymbol{B} \boldsymbol{x}=\lambda_{\mathbf{2}} \boldsymbol{x}$. What is an eigenvalue of

What is an eigenvalue of $\boldsymbol{A}^{2}+\sigma \boldsymbol{B}$?

$$
\begin{aligned}
& \left(A^{2}+\sigma B\right) x=\lambda x \\
& A^{2} x+\sigma B x=\lambda x \\
& \lambda_{1}^{2} x+\sigma \lambda_{2} x=\lambda x \\
& \lambda=\lambda_{1}^{2}+\sigma \lambda_{2}
\end{aligned}
$$

Eigenvalues of a Shifted Inverse Matrix

$$
\begin{aligned}
& \text { Suppose the eigenpairs }(\boldsymbol{x}, \lambda) \text { satisfy } \boldsymbol{A x}=\boldsymbol{\lambda} \boldsymbol{x} \text {. } \\
& (x, \lambda) \longrightarrow A \\
& (x, \bar{\lambda}) \longrightarrow(A-\sigma I)^{-1} \text { ? What is } \bar{\lambda} \text { ? } \\
& (A-\sigma I)^{-1} x=\bar{\lambda} x \\
& \frac{1}{\bar{\lambda}} x=(A-\sigma I) x \\
& =\underbrace{A x}_{x}-\sigma I x \\
& \frac{1}{\bar{\lambda}} x=\lambda x-\sigma x=(\lambda-\sigma) x
\end{aligned}
$$

Eigenvalues of a Shifted Inverse_Matrix

$$
\begin{aligned}
& x_{k+1}=\underbrace{(A-\sigma I)^{-1}} x_{k} \underbrace{\begin{array}{c}
\text { Inverse Power iteration } \\
(A-\sigma I)
\end{array}}_{(A-\sigma I) x_{k+1}=x_{k} \longrightarrow \frac{1}{\lambda-\sigma}}
\end{aligned}
$$

converge to eigenvector

$$
\begin{aligned}
& \text { eigenvector } \\
& \text { to largest } \frac{(\lambda)}{\lambda} \text { or } \frac{1}{\lambda-\sigma} \text { to smallest } \frac{(\lambda-\sigma)}{\lambda \rightarrow \sigma} \\
& \text { eigenvalue of A which is }
\end{aligned}
$$

\rightarrow converging to eigenvalue of A which is closer to σ

- define σ
- random xor 1 . normalize $x=x_{0} / 11$ for $i=1,2$.

$$
\left.\begin{array}{l}
L y=P^{\top} \times \longrightarrow \text { solve for } y \\
U x_{\text {new }}=y \longrightarrow \text { solve for } x_{\text {new }}
\end{array}\right\} O\left(n^{2}\right)
$$

$$
x=x_{\text {new }} /\left\|x_{\text {new }}\right\|
$$

$X=x_{\text {new }} /\left\|x_{\text {new }}\right\|$
x : eigenvector corresponding λ which is the us. A
closer to σ

$$
\begin{aligned}
& \text { - } B=(A-\sigma I) \\
& \text { - } P, L, U=\operatorname{la} \cdot l u(A-\sigma I)^{\rho^{0\left(n^{3}\right)}} \lambda=\frac{x^{\top} A x}{x^{\top} x}
\end{aligned}
$$

Convergence sumpmary

onvergence suænmary							
	Method	Cost	Convergence $\left\\|e_{k+1}\right\\| /\left\\|e_{k}\right\\|$				
Power Method	$\boldsymbol{x}_{k+1}=\boldsymbol{A} \boldsymbol{x}_{k}$		(λ_{2}				
Inverse Power Mernod λ_{n}	$\begin{array}{r} A x_{k+1}=x_{k} \\ O\left(n^{3}\right) \end{array}$	$\frac{\sqrt{n^{3}}+\frac{k n^{2}}{O\left(n^{3}\right)}}{}$	λ_{n}				
Shifted Inverse Power Method	$(\boldsymbol{A}-\sigma \boldsymbol{I}) x_{k+1}=\boldsymbol{x}_{k}$	$\begin{aligned} & n^{3}+k n^{2} \\ & \mathrm{O}\left(n^{3}\right) \end{aligned}$	$\left\|\frac{\lambda_{c}-\sigma}{\lambda_{c 2}-\sigma}\right\|$				

λ_{1} : largest eigenvalue (in magnitude)
λ_{2} : second largest eigenvalue (in magnitude)
λ_{n} : smallest eigenvalue (in magnitude)
λ_{n-1} : second smallest eigenvalue (in magnitude)
λ_{c} : closest eigenvalue to σ
$\lambda_{c 2}$: second closest eigenvalue to σ

