
Nonlinear Equations



How can we solve these equations?
• Spring force: 
! = # $

What is the displacement when 
! = 2N?
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How can we solve these equations?
• Drag force:  
! = 0.5 +( , - .) = /( .)

What is the velocity when
! = 20N?
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Nonlinear Equations in 1D

Goal: Solve 0 $ = 0 for 0:ℛ → ℛ

Find the root (zero) of the 
nonlinear equation 0 .

Often called Root Finding
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Bisection method
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Convergence
An iterative method converges with rate 5 if:

lim.→0
||2!"#||
||2!||$

= +, 0 < + < ∞ 5 = 1: linear convergence

Linear convergence gains a constant number of accurate digits each step 
(and + < 1 matters!)

For example: Power Iteration=kjm4fItY¥7constant-8 → linear convergence

& Xz- Xi → constant f I → show convergence
X
, = A Xz → C = at→ faster convergence as

a increases



Convergence
An iterative method converges with rate 5 if:

lim.→0
||>.34||
||>.||5

= +, 0 < + < ∞

5 = 1: linear convergence
5 > 1: superlinear convergence
5 = 2: quadratic convergence

Linear convergence gains a constant number of accurate digits each step 
(and + < 1 matters!)

Quadratic convergence doubles the number of accurate digits in each step 
(however it only starts making sense once ||>.|| is small (and + does not 
matter much)
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Convergence
• The bisection method does not estimate $., the approximation of the 

desired root $. It instead finds an interval smaller than a given 
tolerance that contains the root.
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Example:
Consider the nonlinear equation

0 $ = 0.5$) − 2

and solving f x = 0 using the Bisection Method.  For each of the initial 
intervals below, how many iterations are required to ensure the root is 
accurate within 267?

A) [−10,−1.8]

B) [−3,−2.1]

C) [−4, 1.9]

in general : ties lol
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Bisection method

Algorithm:
1.Take two points, ! and ", on each side of the root such that #(!) and #(") have 
opposite signs.

2.Calculate the midpoint & = !"#
$

3. Evaluate #(&) and use & to replace either ! or ", keeping the signs of the 
endpoints opposite.
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Bisection Method - summary

q The function must be continuous with a root in the interval L, M

q Requires only one function evaluations for each iteration!
o The first iteration requires two function evaluations.

q Given the initial internal [L, M], the length of the interval after #
iterations is 869)!

q Has linear convergence

=
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Newton’s method
• Recall we want to solve ! " = 0 for !:ℛ → ℛ

• The Taylor expansion:

! "! + ℎ ≈ ! "! + !′ "! ℎ

gives a linear approximation for the nonlinear function ! near "!.
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Newton’s method

:"

Find x# s .t . f#too
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Example
Consider solving the nonlinear equation

5 = 2.0 /" + "#

What is the result of applying one iteration of Newton’s method for solving 
nonlinear equations with initial starting guess "$ = 0, i.e. what is "%? 

A) −2
B) 0.75
C) −1.5
D) 1.5
E) 3.0
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Newton’s Method - summary

q Must be started with initial guess close enough to root (convergence is 
only local). Otherwise it may not converge at all.

q Requires function and first derivative evaluation at each iteration (think 
about two function evaluations)

q Typically has quadratic convergence

lim.→0
||>.34||
||>.||)

= +, 0 < + < ∞

q What can we do when the derivative evaluation is too costly (or 
difficult to evaluate)?
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Secant method
Also derived from Taylor expansion, but instead of using 0′ $. , it 
approximates the tangent with the secant line:

$.34 = $. − 0 $. /0′ $.
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Secant Method - summary

q Still local convergence

q Requires only one function evaluation per iteration (only the first 
iteration requires two function evaluations)

q Needs two starting guesses

q Has slower convergence than Newton’s Method – superlinear
convergence

lim.→0
||>.34||
||>.||5

= +, 1 < 5 < 2
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1D methods for root finding:
Method Update Convergence Cost

Bisection Check signs of & ' and 
& (

)! =
|( − '|
2!

Linear (/ = 1 and c = 0.5) One function evaluation per 
iteration, no need to 
compute derivatives

Secant 6!"# = 6! + ℎ

ℎ = −& 6! /&′ 6!

Superlinear / = 1.618 ,
local convergence properties, 
convergence depends on the 
initial guess

One function evaluation per 
iteration (two evaluations for 
the initial guesses only), no 
need to compute derivatives

Newton 6!"# = 6! + ℎ

ℎ = −& 6! />&'

>&' = & 6! − & 6!$#
6! − 6!$#

Quadratic / = 2 , local 
convergence properties,
convergence depends on the 
initial guess

Two function evaluations per 
iteration, requires first order 
derivatives



Nonlinear system of equations



https://www.youtube.com/watch?v=NRgNDlVtmz0 (Robotic arm 1)
https://www.youtube.com/watch?v=9DqRkLQ5Sv8 (Robotic arm 2)
https://www.youtube.com/watch?v=DZ_ocmY8xEI (Blender)

Robotic arms



Inverse Kinematics
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Nonlinear system of equations
Goal: Solve P Q = R for P:ℛ; → ℛ;
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Newton’s method
Approximate the nonlinear function P Q by a linear function using 
Taylor expansion:
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Newton’s method
Algorithm:

Convergence: 
• Typically has quadratic convergence
• Drawback: Still only locally convergent

Cost:
• Main cost associated with computing the Jacobian matrix and solving 

the Newton step.
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Example
Consider solving the nonlinear system of equations

2 = 2) + +
4 = +$ + 4)$

What is the result of applying one iteration of Newton’s method with  the following initial 
guess?

-% = 1
0

µ
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Newton’s method
!0 = #$#%#&' ()*++

,-. / = 1,2, …

Evaluate 4 = 5 !1

Evaluate 6 !1

Factorization of Jacobian (for example 78 = 5)

Solve using factorized J  (for example 78 91 = −6 !1

Update !123 = !1+ 91

we

-



Newton’s method - summary
q Typically quadratic convergence (local convergence)

q Computing the Jacobian matrix requires the equivalent of S) function 
evaluations for a dense problem (where every function of P Q depends 
on every component of Q).

q Computation of the Jacobian may be cheaper if the matrix is sparse.

q The cost of  calculating the step T is U S< for a dense Jacobian matrix 
(Factorization + Solve)

q If the same Jacobian matrix V Q. is reused for several consecutive 
iterations, the convergence rate will suffer accordingly (trade-off 
between cost per iteration and number of iterations needed for 
convergence)
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Inverse Kinematics X, y , p → 9 , Oz , 03
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