
Optimization (Introduction)



Goal: Find the minimizer 𝒙∗that minimizes the objective (cost) 
function 𝑓 𝒙 :ℛ" → ℛ

Optimization

Unconstrained Optimization



Goal: Find the minimizer 𝒙∗that minimizes the objective (cost) 
function 𝑓 𝒙 :ℛ" → ℛ

Optimization

Constrained Optimization



Unconstrained Optimization
• What if we are looking for a maximizer 𝒙∗?

𝑓 𝒙∗ = max
𝒙
𝑓 𝒙



Calculus problem: maximize the rectangle 
area subject to perimeter constraint

max
𝒅 ∈ ℛ!
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What is the optimal solution? (1D)

(First-order) Necessary condition 

(Second-order) Sufficient condition

𝑓 𝑥∗ = min
"
𝑓 𝑥



Types of optimization problems

Gradient-free methods

Gradient (first-derivative) methods

Evaluate 𝑓 𝑥 , 𝑓′ 𝑥 , 𝑓′′ 𝑥

Second-derivative methods

𝑓 𝑥∗ = min
"
𝑓 𝑥

Evaluate 𝑓 𝑥

Evaluate 𝑓 𝑥 , 𝑓′ 𝑥

𝑓: nonlinear, continuous 
and smooth



Does the solution exists? Local or global 
solution?



Example (1D)
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Consider the function 𝑓 𝒙 = 7!

8 −
7"

9 − 11 𝑥
: + 40𝑥. Find the stationary 

point and check the sufficient condition



What is the optimal solution? (ND)

(First-order) Necessary condition 

(Second-order) Sufficient condition

1D:  𝑓## 𝑥 > 0

1D:  𝑓′ 𝑥 = 0

𝑓 𝒙∗ = min
𝒙
𝑓 𝒙



Taking derivatives…



From linear algebra:

A symmetric 𝑛 ×𝑛 matrix 𝑯 is positive definite if 𝒚𝑻𝑯 𝒚 > 𝟎 for any 𝒚 ≠ 𝟎

A symmetric 𝑛 ×𝑛 matrix 𝑯 is positive semi-definite if 𝒚𝑻𝑯 𝒚 ≥ 𝟎 for any 𝒚 ≠ 𝟎

A symmetric 𝑛 ×𝑛 matrix 𝑯 is negative definite if 𝒚𝑻𝑯 𝒚 < 𝟎 for any 𝒚 ≠ 𝟎

A symmetric 𝑛 ×𝑛 matrix 𝑯 is negative semi-definite if 𝒚𝑻𝑯 𝒚 ≤ 𝟎 for any 𝒚 ≠ 𝟎

A symmetric 𝑛 ×𝑛 matrix 𝑯 that is not negative semi-definite and not positive semi-
definite is called indefinite



𝑓 𝒙∗ = min
𝒙
𝑓 𝒙

First order necessary condition: 𝜵𝑓 𝒙 = 𝟎
Second order sufficient condition: 𝑯 𝒙 is positive definite
How can we find out if the Hessian is positive definite?



Types of optimization problems

Gradient-free methods

Gradient (first-derivative) methods

Evaluate 𝑓 𝒙 , 𝜵𝑓 𝒙 , 𝜵𝟐𝑓 𝒙

Second-derivative methods

𝑓 𝒙∗ = min
𝒙
𝑓 𝒙

Evaluate 𝑓 𝒙

Evaluate 𝑓 𝒙 , 𝜵𝑓 𝒙

𝑓: nonlinear, continuous 
and smooth



Consider the function 𝑓 𝑥E, 𝑥: = 2𝑥E9 + 4𝑥:: + 2𝑥: − 24𝑥E
Find the stationary point and check the sufficient condition

Example (ND)



Optimization (1D Methods)



Optimization in 1D: 
Golden Section Search 
• Similar idea of bisection method for root finding
• Needs to bracket the minimum inside an interval
• Required the function to be unimodal

A function 𝑓:ℛ → ℛ is unimodal on an interval [𝑎, 𝑏]

ü There is a unique 𝒙∗ ∈ [𝑎, 𝑏] such that 𝑓(𝒙∗) is the minimum in 
[𝑎, 𝑏]

ü For any 𝑥E, 𝑥: ∈ [𝑎, 𝑏] with 𝑥E < 𝑥:

§ 𝑥: < 𝒙∗⟹𝑓(𝑥E) > 𝑓(𝑥:)
§ 𝑥E > 𝒙∗⟹𝑓(𝑥E) < 𝑓(𝑥:)
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Golden Section Search 



Golden Section Search 
What happens with the length of the interval after one iteration?

ℎ! = 𝜏 ℎ"

Or in general: ℎ#$! = 𝜏 ℎ#

Hence the interval gets reduced by 𝝉
(for bisection method to solve nonlinear equations, 𝜏=0.5)

For recursion: 
𝜏 ℎ! = (1 − 𝜏) ℎ"
𝜏 𝜏 ℎ" = (1 − 𝜏) ℎ"

𝜏% = (1 − 𝜏)
𝝉 = 𝟎. 𝟔𝟏𝟖



• Derivative free method!

• Slow convergence:

lim
I→K

|𝑒ILE|
𝑒I

= 0.618 𝑟 = 1 (𝑙𝑖𝑛𝑒𝑎𝑟 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒)

• Only one function evaluation per iteration

Golden Section Search 



Example



Newton’s Method
Using Taylor Expansion, we can approximate the function 𝑓 with a quadratic 
function about  𝑥M
𝑓 𝑥 ≈ 𝑓 𝑥M + 𝑓N 𝑥M (𝑥 − 𝑥M) +

E
: 𝑓

N′ 𝑥M (𝑥 − 𝑥M):

And we want to find the minimum of the quadratic function using the 
first-order necessary condition



Newton’s Method
• Algorithm:
𝑥3 = starting guess
𝑥456 = 𝑥4 − 𝑓′ 𝑥4 /𝑓′′ 𝑥4

• Convergence: 
• Typical quadratic convergence
• Local convergence (start guess close to solution)
• May fail to converge, or converge to a maximum or 

point of inflection



Newton’s Method (Graphical Representation)



Example
Consider the function  𝑓 𝑥 = 4 𝑥9 + 2 𝑥: + 5 𝑥 + 40

If we use the initial guess 𝑥M = 2, what would be the value of 𝑥 after one 
iteration of the Newton’s method?



Optimization (ND Methods)



Optimization in ND: 
Steepest Descent Method 
Given a function 
𝑓 𝒙 :ℛ7 → ℛ at a point 
𝒙, the function will decrease 
its value in the direction of 
steepest descent: −𝜵𝑓 𝒙

𝑓 𝑥E, 𝑥: = (𝑥E − 1)𝟐+(𝑥: − 1)𝟐

What is the steepest descent 
direction?



Steepest Descent Method 

𝑓 𝑥E, 𝑥: = (𝑥E − 1)𝟐+(𝑥: − 1)𝟐
Start with initial guess:

𝒙M =
3
3

Check the update:



Steepest Descent Method 

𝑓 𝑥E, 𝑥: = (𝑥E − 1)𝟐+(𝑥: − 1)𝟐
Update the variable with: 
𝒙ILE = 𝒙I − 𝛼I𝜵𝑓 𝒙I

How far along the gradient 
should we go? What is the “best 
size” for 𝛼I?





Steepest Descent Method 
Algorithm:

Initial guess: 𝒙3

Evaluate: 𝒔4= −𝜵𝑓 𝒙4

Perform a line search to obtain 𝛼4 (for example, Golden Section 
Search)

𝛼4 = argmin
8

𝑓 𝒙4 + 𝛼 𝒔4

Update: 𝒙456 = 𝒙4 + 𝛼4 𝒔4



Line Search



Example
Consider minimizing the function

𝑓 𝑥!, 𝑥" = 10(𝑥!)# − 𝑥" " + 𝑥! − 1

Given the initial guess
𝑥! = 2, 𝑥"= 2

what is the direction of the first step of gradient descent?



Newton’s Method 
Using Taylor Expansion, we build the approximation:



Newton’s Method
Algorithm:
Initial guess: 𝒙3

Solve:𝑯𝒇 𝒙4 𝒔4 = −𝜵𝑓 𝒙4
Update: 𝒙456 = 𝒙4 + 𝒔4

Note that the Hessian is related to the curvature and therefore contains the 
information about how large the step should be.



Try this out!
𝑓 𝑥, 𝑦 = 0.5𝑥: + 2.5𝑦:

When using the Newton’s Method to find the minimizer of this 
function, estimate the number of iterations it would take for 
convergence?

A) 1     B) 2-5     C) 5-10    D) More than 10    E) Depends on the initial guess



Newton’s Method Summary
Algorithm:
Initial guess: 𝒙3
Solve:𝑯𝒇 𝒙4 𝒔4 = −𝜵𝑓 𝒙4
Update: 𝒙456 = 𝒙4 + 𝒔4

About the method…
• Typical quadratic convergence J
• Need second derivatives L
• Local convergence (start guess close to solution)
• Works poorly when Hessian is nearly indefinite
• Cost per iteration: 𝑂(𝑛:)


