Optimization (Introduction)

Optimization

Goal: Find the minimizer \boldsymbol{x}^{*} that minimizes the objective (cost) function $f(\boldsymbol{x}): \mathcal{R}^{n} \rightarrow \mathcal{R}$

Unconstrained Optimization

Optimization

Goal: Find the minimizer \boldsymbol{x}^{*} that minimizes the objective (cost) function $f(\boldsymbol{x}): \mathcal{R}^{n} \rightarrow \mathcal{R}$

Constrained Optimization

Unconstrained Optimization

- What if we are looking for a maximizer \boldsymbol{x}^{*} ?

$$
f\left(\boldsymbol{x}^{*}\right)=\max _{\boldsymbol{x}} f(\boldsymbol{x})
$$

Calculus problem: maximize the rectangle area subject to perimeter constraint

$$
\max _{\boldsymbol{d} \in \mathcal{R}^{2}} \quad f\left(d_{1}, d_{2}\right)=d_{1} \times d_{2}
$$

such that $\quad g\left(d_{1}, d_{2}\right)=2\left(d_{1}+d_{2}\right)-20 \leq 0$

What is the optimal solution? (1D)

$$
f\left(x^{*}\right)=\min _{x} f(x)
$$

(First-order) Necessary condition
(Second-order) Sufficient condition

Types of optimization problems

$$
f\left(x^{*}\right)=\min _{x} f(x)
$$

f : nonlinear, continuous and smooth

Gradient-free methods
Evaluate $f(x)$
Gradient (first-derivative) methods
Evaluate $f(x), f^{\prime}(x)$

Second-derivative methods
Evaluate $f(x), f^{\prime}(x), f^{\prime \prime}(x)$

Does the solution exists? Local or global

 solution?
Example (1D)

Consider the function $f(\boldsymbol{x})=\frac{x^{4}}{4}-\frac{x^{3}}{3}-11 x^{2}+40 x$. Find the stationary point and check the sufficient condition

What is the optimal solution? (ND)

$$
f\left(\boldsymbol{x}^{*}\right)=\min _{x} f(\boldsymbol{x})
$$

(First-order) Necessary condition
1D: $f^{\prime}(x)=0$
(Second-order) Sufficient condition
1D: $f^{\prime \prime}(x)>0$

Taking derivatives...

From linear algebra:

A symmetric $n \times n$ matrix \boldsymbol{H} is positive definite if $\boldsymbol{y}^{\boldsymbol{T}} \boldsymbol{H} \boldsymbol{y}>\mathbf{0}$ for any $\boldsymbol{y} \neq \mathbf{0}$
A symmetric $n \times n$ matrix \boldsymbol{H} is positive semi-definite if $\boldsymbol{y}^{\boldsymbol{T}} \boldsymbol{H} \boldsymbol{y} \geq \mathbf{0}$ for any $\boldsymbol{y} \neq \mathbf{0}$
A symmetric $n \times n$ matrix \boldsymbol{H} is negative definite if $\boldsymbol{y}^{\boldsymbol{T}} \boldsymbol{H} \boldsymbol{y}<\mathbf{0}$ for any $\boldsymbol{y} \neq \mathbf{0}$
A symmetric $n \times n$ matrix \boldsymbol{H} is negative semi-definite if $\boldsymbol{y}^{\boldsymbol{T}} \boldsymbol{H} \boldsymbol{y} \leq \mathbf{0}$ for any $\boldsymbol{y} \neq \mathbf{0}$
A symmetric $n \times n$ matrix \boldsymbol{H} that is not negative semi-definite and not positive semidefinite is called indefinite

$$
f\left(\boldsymbol{x}^{*}\right)=\min f(\boldsymbol{x})
$$

First order necessary condition: $\stackrel{\boldsymbol{\nabla}}{\boldsymbol{x}}(\boldsymbol{x})=\mathbf{0}$
Second order sufficient condition: $\boldsymbol{H}(\boldsymbol{x})$ is positive definite How can we find out if the Hessian is positive definite?

Types of optimization problems

$$
f\left(\boldsymbol{x}^{*}\right)=\min _{\boldsymbol{x}} f(\boldsymbol{x})
$$

f : nonlinear, continuous and smooth

Gradient-free methods
Evaluate $f(\boldsymbol{x})$
Gradient (first-derivative) methods Evaluate $f(\boldsymbol{x}), \boldsymbol{\nabla} f(\boldsymbol{x})$

Second-derivative methods
Evaluate $f(\boldsymbol{x}), \nabla f(\boldsymbol{x}), \nabla^{2} f(\boldsymbol{x})$

Example (ND)

Consider the function $f\left(x_{1}, x_{2}\right)=2 x_{1}^{3}+4 x_{2}^{2}+2 x_{2}-24 x_{1}$ Find the stationary point and check the sufficient condition

Optimization (1D Methods)

Optimization in 1D:
 Golden Section Search

- Similar idea of bisection method for root finding
- Needs to bracket the minimum inside an interval
- Required the function to be unimodal

A function $f: \mathcal{R} \rightarrow \mathcal{R}$ is unimodal on an interval $[a, b]$
\checkmark There is a unique $\boldsymbol{x}^{*} \in[a, b]$ such that $f\left(\boldsymbol{x}^{*}\right)$ is the minimum in [a, b]
\checkmark For any $x_{1}, x_{2} \in[a, b]$ with $x_{1}<x_{2}$

- $x_{2}<x^{*} \Rightarrow f\left(x_{1}\right)>f\left(x_{2}\right)$
- $x_{1}>x^{*} \Longrightarrow f\left(x_{1}\right)<f\left(x_{2}\right)$

Golden Section Search

Propose:

$$
\begin{aligned}
& x_{1}=a+(1-\tau) h_{0} \\
& x_{2}=a+\tau h_{0}
\end{aligned}
$$

Evaluate $f_{1}=f\left(x_{1}\right)$

$$
f_{2}=f\left(x_{2}\right)
$$

if $\left(f_{1}>f_{2}\right)$:

$$
a=x_{1}
$$

$x_{1}=x_{2} \rightarrow$ already have funk.
$h_{1}=b-a$ value!
$x_{2}=a+\tau h_{1}$
$f_{2}=f\left(x_{2}\right) \rightarrow$ onlu one
if $\left(f_{1}<f_{2}\right)$:

$$
\begin{aligned}
& b=x_{2} \\
& x_{2}=x_{1} \\
& x_{1}=a+(1-\tau) h_{1} \\
& f_{1}=f\left(x_{1}\right)
\end{aligned}
$$

Golden Section Search

What happens with the length of the interval after one iteration?

$$
h_{1}=\tau h_{o}
$$

Or in general: $h_{k+1}=\tau h_{k}$

Hence the interval gets reduced by τ

(for bisection method to solve nonlinear equations, $\tau=0.5$)
For recursion:

$$
\begin{aligned}
\tau h_{1} & =(1-\tau) h_{o} \\
\tau \tau h_{o} & =(1-\tau) h_{o} \\
\tau^{2} & =(1-\tau) \\
\boldsymbol{\tau} & =\mathbf{0 . 6 1 8}
\end{aligned}
$$

Golden Section Search

- Derivative free method!
- Slow convergence:

$$
\lim _{k \rightarrow \infty} \frac{\left|e_{k+1}\right|}{\left|e_{k}\right|}=0.618 \quad r=1 \text { (linear convergence) }
$$

- Only one function evaluation per iteration

Example

Consider running golden section search on a function that is unimodal. If golden section search is started with an initial brakcet of $[-10,10]$, what is the length of the new bracket after 1 iteration?
A) 20
B) 10
C) 12.36
D) 7.64

Newton's Method

Using Taylor Expansion, we can approximate the function f with a quadratic function about x_{0}

$$
f(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}
$$

And we want to find the minimum of the quadratic function using the first-order necessary condition

Newton's Method

- Algorithm:
$x_{0}=$ starting guess
$x_{k+1}=x_{k}-f^{\prime}\left(x_{k}\right) / f^{\prime \prime}\left(x_{k}\right)$
- Convergence:
- Typical quadratic convergence
- Local convergence (start guess close to solution)
- May fail to converge, or converge to a maximum or point of inflection

Newton's Method (Graphical Representation)

Example

Consider the function $f(x)=4 x^{3}+2 x^{2}+5 x+40$

If we use the initial guess $x_{0}=2$, what would be the value of x after one iteration of the Newton's method?

Optimization (ND Methods)

Optimization in ND:
 Steepest Descent Method

Given a function
$f(\boldsymbol{x}): \mathcal{R}^{n} \rightarrow \mathcal{R}$ at a point \boldsymbol{x}, the function will decrease its value in the direction of steepest descent: $-\boldsymbol{\nabla} f(\boldsymbol{x})$

What is the steepest descent direction?

$$
f\left(x_{1}, x_{2}\right)=\left(x_{1}-1\right)^{2}+\left(x_{2}-1\right)^{2}
$$

Steepest Descent Method

Start with initial guess:

$$
x_{0}=\left[\begin{array}{l}
3 \\
3
\end{array}\right]
$$

Check the update:

Steepest Descent Method

Update the variable with:

$$
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\alpha_{k} \boldsymbol{\nabla} f\left(\boldsymbol{x}_{k}\right)
$$

How far along the gradient should we go? What is the "best size" for α_{k} ?

$$
f\left(x_{1}, x_{2}\right)=\left(x_{1}-1\right)^{2}+\left(x_{2}-1\right)^{2}
$$

Steepest Descent Method

Algorithm:

Initial guess: \boldsymbol{x}_{0}
Evaluate: $\boldsymbol{s}_{\boldsymbol{k}}=-\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)$

Perform a line search to obtain α_{k} (for example, Golden Section Search)

$$
\alpha_{k}=\operatorname{argmin} f\left(\boldsymbol{x}_{k}+\alpha \boldsymbol{s}_{k}\right)
$$

Update: $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\alpha_{k} \boldsymbol{s}_{k}$

Line Search

Example

Consider minimizing the function

$$
f\left(x_{1}, x_{2}\right)=10\left(x_{1}\right)^{3}-\left(x_{2}\right)^{2}+x_{1}-1
$$

Given the initial guess

$$
x_{1}=2, x_{2}=2
$$

what is the direction of the first step of gradient descent?

Newton's Method

Using Taylor Expansion, we build the approximation:

Newton's Method

Algorithm:

Initial guess: $\boldsymbol{x}_{\mathbf{0}}$
Solve: $\boldsymbol{H}_{\boldsymbol{f}}\left(\boldsymbol{x}_{\boldsymbol{k}}\right) \boldsymbol{s}_{k}=-\boldsymbol{\nabla} f\left(\boldsymbol{x}_{k}\right)$
Update: $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{\boldsymbol{k}}+\boldsymbol{s}_{\boldsymbol{k}}$

Note that the Hessian is related to the curvature and therefore contains the information about how large the step should be.

Try this out!

$$
f(x, y)=0.5 x^{2}+2.5 y^{2}
$$

When using the Newton's Method to find the minimizer of this function, estimate the number of iterations it would take for convergence?
A) 1
B) 2-5
C) $5-10$
D) More than 10
E) Depends on the initial guess

Newton's Method Summary

Algorithm:

Initial guess: \boldsymbol{x}_{0}
Solve: $\boldsymbol{H}_{\boldsymbol{f}}\left(\boldsymbol{x}_{k}\right) \boldsymbol{s}_{k}=-\boldsymbol{\nabla} f\left(\boldsymbol{x}_{k}\right)$
Update: $\boldsymbol{x}_{\boldsymbol{k}+1}=\boldsymbol{x}_{\boldsymbol{k}}+\boldsymbol{s}_{\boldsymbol{k}}$

About the method...

- Typical quadratic convergence $)$
- Need second derivatives $*$
- Local convergence (start guess close to solution)
- Works poorly when Hessian is nearly indefinite
- Cost per iteration: $O\left(n^{3}\right)$

