Singular Value Decomposition (matrix factorization)

Singular Value Decomposition

The SVD is a factorization of a $m \times n$ matrix into

$$A = U \Sigma V^T$$

where U is a $m \times m$ orthogonal matrix, V^T is a $n \times n$ orthogonal matrix and Σ is a $m \times n$ diagonal matrix.

$$\sigma_1 \geq \sigma_2 \geq \sigma_3 \dots$$

For a square matrix (m = n):

$$\mathbf{A} = \begin{pmatrix} \vdots & \dots & \vdots \\ \mathbf{u}_1 & \dots & \mathbf{u}_n \\ \vdots & \dots & \vdots \end{pmatrix} \begin{pmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_n \end{pmatrix} \begin{pmatrix} \vdots & \dots & \vdots \\ \mathbf{v}_1 & \dots & \mathbf{v}_n \\ \vdots & \dots & \vdots \end{pmatrix}^T$$

Reduced SVD

What happens when \boldsymbol{A} is not a square matrix?

1)
$$m > n$$

$$\boldsymbol{A} = \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^T = \begin{pmatrix} \vdots & \dots & \vdots & \dots & \vdots \\ \boldsymbol{u}_1 & \dots & \boldsymbol{u}_n & \dots & \boldsymbol{u}_m \\ \vdots & \dots & \vdots & \dots & \vdots \end{pmatrix} \begin{pmatrix} \sigma_1 & & & \\ & \ddots & & \\ & & \sigma_n \\ & & & 0 \\ & & & 0 \end{pmatrix} \begin{pmatrix} \dots & \boldsymbol{v}_1^T & \dots \\ \vdots & \vdots & \vdots \\ \dots & \boldsymbol{v}_n^T & \dots \end{pmatrix}$$

$$m \times m \qquad m \times n \qquad n \times n$$

Reduced SVD

2) n > m

$$A = \mathbf{U} \, \mathbf{\Sigma} \, \mathbf{V}^T = \begin{pmatrix} \vdots & \dots & \vdots \\ \mathbf{u}_1 & \dots & \mathbf{u}_m \\ \vdots & \dots & \vdots \end{pmatrix} \begin{pmatrix} \sigma_1 & & & & \\ & \ddots & & & \\ & & \sigma_m & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

Let's take a look at the product $\Sigma^T \Sigma$, where Σ has the singular values of a A, a $m \times n$ matrix.

$$\mathbf{\Sigma}^{T}\mathbf{\Sigma} = \begin{pmatrix} \sigma_{1} & & & & \\ & \ddots & & & \\ & & \sigma_{n} & & & 0 \end{pmatrix} \begin{pmatrix} \sigma_{1} & & & \\ & \ddots & & \\ & & \sigma_{n} & & \\ & & & 0 \end{pmatrix} = \begin{pmatrix} \sigma_{1}^{2} & & \\ & \ddots & \\ & & & \sigma_{n}^{2} \end{pmatrix}$$

$$n \times m$$

$$m \times n$$

n > m

$$\mathbf{\Sigma}^{T}\mathbf{\Sigma} = \begin{pmatrix} \sigma_{1} & & & & & \\ & \ddots & & & \\ & & \sigma_{m} & \\ & & 0 \\ & & \vdots \\ & & 0 \end{pmatrix} \begin{pmatrix} \sigma_{1} & & & 0 & & \\ & \ddots & & & \ddots \\ & & \sigma_{m}^{2} & & 0 \\ & & \sigma_{m}^{2} & & 0 \\ & & \ddots & & \ddots \\ & & & 0 & & \\ & & & \ddots & & \\ & & & 0 & & 0 \end{pmatrix}$$

$$n \times m$$

$$n \times m$$

Assume A with the singular value decomposition $A = U \Sigma V^T$. Let's take a look at the eigenpairs corresponding to $A^T A$:

In a similar way,

$$AA^{T} = (U \Sigma V^{T}) (U \Sigma V^{T})^{T}$$

$$= (U \Sigma V^{T}) (V^{T})^{T} (\Sigma)^{T} U^{T}$$

$$= U \Sigma V^{T} V \Sigma^{T} U^{T}$$

$$= U \Sigma \Sigma^{T} U^{T}$$

Hence
$$AA^T = U \Sigma^2 U^T$$

Recall that columns of \boldsymbol{U} are all linear independent (orthogonal matrices), then from diagonalization ($\boldsymbol{B} = \boldsymbol{X}\boldsymbol{D}\boldsymbol{X}^{-1}$), we get:

• The columns of \boldsymbol{U} are the eigenvectors of the matrix $\boldsymbol{A}\boldsymbol{A}^T$

How can we compute an SVD of a matrix A?

- 1. Evaluate the n eigenvectors \mathbf{v}_i and eigenvalues λ_i of $\mathbf{A}^T \mathbf{A}$
- 2. Make a matrix V from the normalized vectors \mathbf{v}_i . The columns are called "right singular vectors".

$$V = \begin{pmatrix} \vdots & \dots & \vdots \\ \mathbf{v}_1 & \dots & \mathbf{v}_n \\ \vdots & \dots & \vdots \end{pmatrix}$$

3. Make a diagonal matrix from the square roots of the eigenvalues.

$$\Sigma = \begin{pmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_n \end{pmatrix} \quad \sigma_i = \sqrt{\lambda_i} \quad \text{and} \quad \sigma_1 \ge \sigma_2 \ge \sigma_3 \dots$$

4. Find $U: A = U \Sigma V^T \implies U \Sigma = A V$. The columns are called the "left singular vectors".

True or False?

A has the singular value decomposition $A = U \sum V^{T}$.

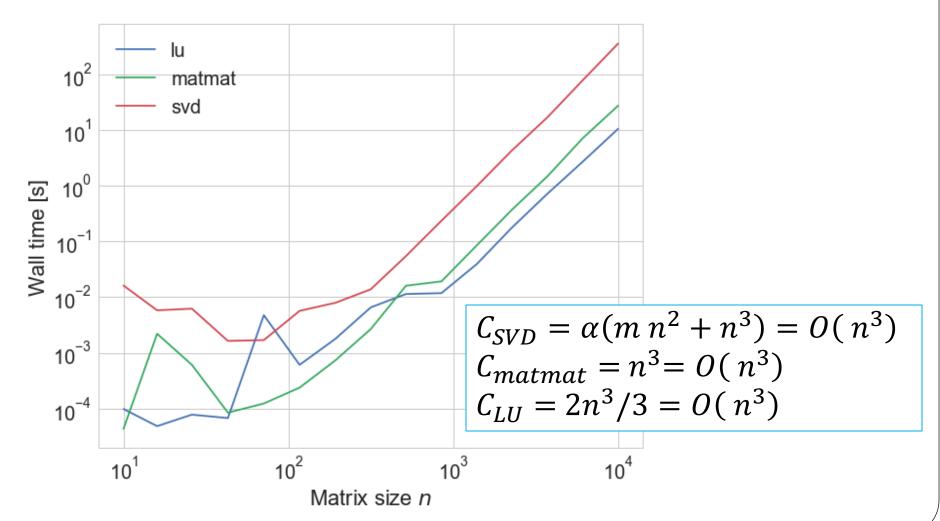
- The matrices \boldsymbol{U} and \boldsymbol{V} are not singular
- The matrix Σ can have zero diagonal entries
- $||U||_2 = 1$
- The SVD exists when the matrix \boldsymbol{A} is singular
- The algorithm to evaluate SVD will fail when taking the square root of a negative eigenvalue

Singular values are always non-negative

- A matrix is positive definite if $x^T B x > 0$ for $\forall x \neq 0$
- A matrix is positive semi-definite if $x^T B x \ge 0$ for $\forall x \ne 0$

Cost of SVD

The cost of an SVD is proportional to $m n^2 + n^3$ where the constant of proportionality constant ranging from 4 to 10 (or more) depending on the algorithm.



SVD summary:

- The SVD is a factorization of a $m \times n$ matrix into $A = U \sum V^T$ where U is a $m \times m$ orthogonal matrix, V^T is a $n \times n$ orthogonal matrix and Σ is a $m \times n$ diagonal matrix.
- In reduced form: $A = U_R \Sigma_R V_R^T$, where U_R is a $m \times k$ matrix, Σ_R is a $k \times k$ matrix, and V_R is a $n \times k$ matrix, and $k = \min(m, n)$.
- The columns of V are the eigenvectors of the matrix A^TA , denoted the right singular vectors.
- The columns of \boldsymbol{U} are the eigenvectors of the matrix $\boldsymbol{A}\boldsymbol{A}^T$, denoted the left singular vectors.
- The diagonal entries of Σ^2 are the eigenvalues of A^TA . $\sigma_i = \sqrt{\lambda_i}$ are called the singular values.
- The singular values are always non-negative (since A^TA is a positive semi-definite matrix, the eigenvalues are always $\lambda \geq 0$)

Singular Value Decomposition (applications)

1) Determining the rank of a matrix

Suppose **A** is a $m \times n$ rectangular matrix where m > n:

$$\mathbf{A} = \begin{pmatrix} \vdots & \dots & \vdots & \dots & \vdots \\ \mathbf{u}_1 & \dots & \mathbf{u}_n & \dots & \mathbf{u}_m \\ \vdots & \dots & \vdots & \dots & \vdots \end{pmatrix} \begin{pmatrix} \sigma_1 & \ddots & & \\ & \ddots & & \\ & & \sigma_n & \\ & & 0 & \\ & & \vdots & \vdots \\ & & \mathbf{v}_n^T & \dots \end{pmatrix}$$

$$\boldsymbol{A} = \begin{pmatrix} \vdots & \dots & \vdots \\ \boldsymbol{u}_1 & \dots & \boldsymbol{u}_n \\ \vdots & \dots & \vdots \end{pmatrix} \begin{pmatrix} \dots & \sigma_1 \, \mathbf{v}_1^T & \dots \\ \vdots & \vdots & \vdots \\ \dots & \sigma_n \, \mathbf{v}_n^T & \dots \end{pmatrix}$$

Rank of a matrix

For general rectangular matrix \boldsymbol{A} with dimensions $m \times n$, the reduced SVD is:

$$A = U_R \Sigma_R V^T$$

Rank of a matrix

- The rank of A equals the number of non-zero singular values which is the same as the number of non-zero diagonal elements in Σ .
- Rounding errors may lead to small but non-zero singular values in a rank deficient matrix, hence the rank of a matrix determined by the number of non-zero singular values is sometimes called "effective rank".
- The right-singular vectors (columns of V) corresponding to vanishing singular values span the null space of A.
- The left-singular vectors (columns of U) corresponding to the non-zero singular values of A span the range of A.

2) Pseudo-inverse

- **Problem:** if **A** is rank-deficient, Σ is not be invertible
- **How to fix it:** Define the Pseudo Inverse
- Pseudo-Inverse of a diagonal matrix:

$$(\mathbf{\Sigma}^+)_i = \begin{cases} \frac{1}{\sigma_i}, & \text{if } \sigma_i \neq 0\\ 0, & \text{if } \sigma_i = 0 \end{cases}$$

• Pseudo-Inverse of a matrix A:

$$A^+ = V \Sigma^+ U^T$$

3) Matrix norms

The Euclidean norm of an orthogonal matrix is equal to 1

$$\|\boldsymbol{U}\|_{2} = \max_{\|\boldsymbol{x}\|_{2}=1} \|\boldsymbol{U}\boldsymbol{x}\|_{2} = \max_{\|\boldsymbol{x}\|_{2}=1} \sqrt{(\boldsymbol{U}\boldsymbol{x})^{T}(\boldsymbol{U}\boldsymbol{x})} = \max_{\|\boldsymbol{x}\|_{2}=1} \sqrt{\boldsymbol{x}^{T}\boldsymbol{x}} = \max_{\|\boldsymbol{x}\|_{2}=1} \|\boldsymbol{x}\|_{2} = 1$$

The Euclidean norm of a matrix is given by the largest singular value

$$||A||_{2} = \max_{\|x\|_{2}=1} ||Ax||_{2} = \max_{\|x\|_{2}=1} ||U \Sigma V^{T}x||_{2} = \max_{\|x\|_{2}=1} ||\Sigma V^{T}x||_{2}$$
$$= \max_{\|V^{T}x\|_{2}=1} ||\Sigma V^{T}x||_{2} = \max_{\|y\|_{2}=1} ||\Sigma y||_{2}$$

Where we used the fact that $\|\boldsymbol{U}\|_2 = 1$, $\|\boldsymbol{V}\|_2 = 1$. Since $\boldsymbol{\Sigma}$ is diagonal we get:

$$||A||_2 = \max(\sigma_i) = \sigma_{max}$$
 of σ_{max} is the largest singular value

4) Norm for the inverse of a matrix

The Euclidean norm of the inverse of a square-matrix is given by:

Assume here A is full rank, so that A^{-1} exists

$$||A^{-1}||_2 = \max_{||x||_2=1} ||(U \Sigma V^T)^{-1}x||_2$$

$$||A^{-1}||_2 = \max_{||x||_2=1} ||V \Sigma^{-1} U^T x||_2$$

Since $\|\boldsymbol{U}\|_2 = 1$, $\|\boldsymbol{V}\|_2 = 1$ and $\boldsymbol{\Sigma}$ is diagonal then

$$\|A^{-1}\|_2 = \frac{1}{\sigma_{min}}$$
 σ_{min} is the smallest singular value

5) Norm of the pseudo-inverse matrix

The norm of the pseudo-inverse of a $m \times n$ matrix is:

$$A^+ = V \Sigma^+ U^T$$

$$||A^+||_2 = \frac{1}{\sigma_r}$$

where σ_r is the smallest **non-zero** singular value. This is valid for any matrix, regardless of the shape or rank.

Note that for a full rank square matrix, $||A^+||_2$ is the same as $||A^{-1}||_2$.

Zero matrix: If A is a zero matrix, then A^+ is also the zero matrix, and $||A^+||_2 = 0$

6) Condition number of a matrix

The condition number of a matrix is given by

$$cond_2(A) = ||A||_2 ||A^+||_2$$

If the matrix is full rank: rank(A) = min(m, n)

$$cond_2(A) = \frac{\sigma_{max}}{\sigma_{min}}$$

where σ_{max} is the largest singular value and σ_{min} is the smallest singular value

If the matrix is rank deficient: rank(A) < min(m, n)

$$cond_2(A) = \infty$$

7) Low-Rank Approximation

We will again use the SVD to write the matrix A as a sum of outer products (of left and right singular vectors) – here for m > n without loss of generality:

$$A = \begin{pmatrix} \vdots & \dots & \vdots \\ \boldsymbol{u}_1 & \dots & \boldsymbol{u}_m \\ \vdots & \dots & \vdots \end{pmatrix} \begin{pmatrix} \sigma_1 \\ & \ddots \\ & & \sigma_n \\ & & 0 \\ & & \vdots \\ & & 0 \end{pmatrix} \begin{pmatrix} \dots & \mathbf{v}_1^T & \dots \\ \vdots & \vdots & \vdots \\ \dots & \mathbf{v}_n^T & \dots \end{pmatrix}$$

$$= \begin{pmatrix} \vdots & \dots & \vdots \\ \boldsymbol{u}_1 & \dots & \boldsymbol{u}_n \\ \vdots & \dots & \vdots \end{pmatrix} \begin{pmatrix} \dots & \sigma_1 \, \mathbf{v}_1^T & \dots \\ \vdots & \vdots & \vdots \\ \dots & \sigma_n \, \mathbf{v}_n^T & \dots \end{pmatrix}$$

$$= \sigma_1 \boldsymbol{u}_1 \mathbf{v}_1^T + \sigma_2 \boldsymbol{u}_2 \mathbf{v}_2^T + \dots + \sigma_n \boldsymbol{u}_n \mathbf{v}_n^T$$

7) Low-Rank Approximation (cont.)

$$\mathbf{A} = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \sigma_2 \mathbf{u}_2 \mathbf{v}_2^T + \dots + \sigma_n \mathbf{u}_n \mathbf{v}_n^T \qquad \sigma_1 \ge \sigma_2 \ge \sigma_3 \dots \ge 0$$

What is the rank of $\sigma_1 \mathbf{u}_1 \mathbf{v}_1^T$?

What is the rank of $\sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \sigma_2 \mathbf{u}_2 \mathbf{v}_2^T$?

7) Low-Rank Approximation (cont.)

The best $\operatorname{rank-}k$ approximation for a $m \times n$ matrix A, (where $k \leq \min(m, n)$) is the one that minimizes the following problem:

$$\min_{A_k} ||A - A_k||$$

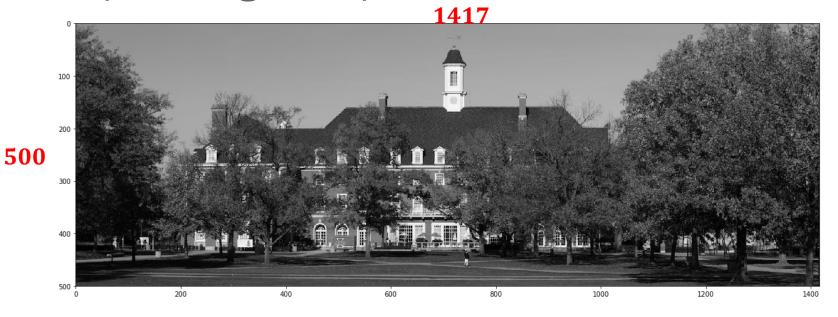
such that $\operatorname{rank}(A_k) \le k$.

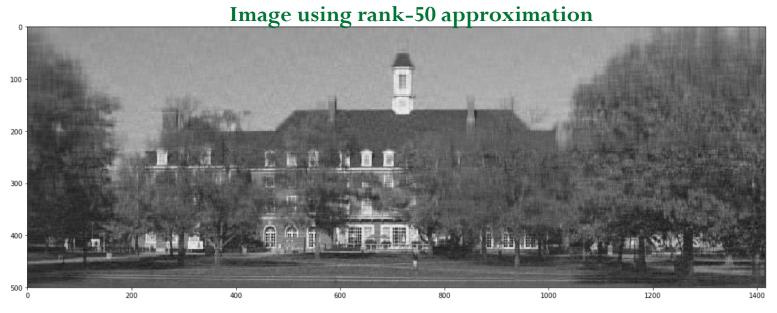
When using the induced 2-norm, the best rank-k approximation is given by:

$$\mathbf{A}_{k} = \sigma_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{T} + \sigma_{2} \mathbf{u}_{2} \mathbf{v}_{2}^{T} + \dots + \sigma_{k} \mathbf{u}_{k} \mathbf{v}_{k}^{T}$$
$$\sigma_{1} \geq \sigma_{2} \geq \sigma_{3} \dots \geq 0$$

Note that rank(A) = n and $rank(A_k) = k$ and the norm of the difference between the matrix and its approximation is

Example: Image compression





8) Using SVD to solve square system of linear equations

If \mathbf{A} is a $n \times n$ square matrix and we want to solve $\mathbf{A} \mathbf{x} = \mathbf{b}$, we can use the SVD for \mathbf{A} such that