Arrays: computing with many numbers

Some perspective

- We have so far (mostly) looked at what we can do with single numbers (and functions that return single numbers).
- Things can get much more interesting once we allow not just one, but many numbers together.
- It is natural to view an array of numbers as one object with its own rules.
- The simplest such set of rules is that of a **vector**.

Vectors

A vector is an element of a Vector Space

$$n$$
-vector: $\mathbf{x} = \left\{ \begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_n \end{array} \right\} = \left[x_1 \quad x_2 \cdots x_n \right]^T$

Vector space \mathcal{V} :

A vector space is a set $\mathcal V$ of vectors and a field $\mathcal F$ of scalars with two operations:

- 1) addition: $u + v \in \mathcal{V}$, and $u, v \in \mathcal{V}$
- 2) multiplication : $\alpha \cdot u \in \mathcal{V}$, and $u \in \mathcal{V}$, $\alpha \in \mathcal{F}$

Vector Space

The addition and multiplication operations must satisfy:

(for
$$\alpha, \beta \in \mathcal{F}$$
 and $u, v \in \mathcal{V}$)

Associativity:
$$u + (v + w) = (u + v) + w$$

Commutativity:
$$u + v = v + u$$

Additive identity:
$$v + 0 = v$$

Additive inverse:
$$v + (-v) = 0$$

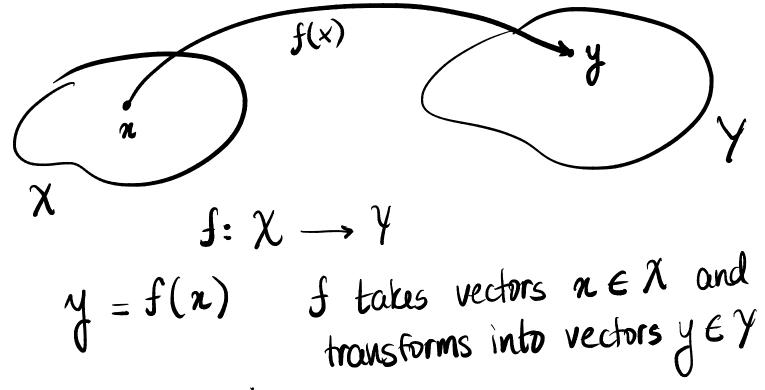
Associativity wrt scalar multiplication:
$$\alpha \cdot (\beta \cdot v) = (\alpha \cdot \beta) \cdot v$$

Distributive wrt scalar addition:
$$(\alpha + \beta) \cdot v = \alpha \cdot v + \beta \cdot v$$

Distributive wrt vector addition:
$$\alpha \cdot (u + v) = \alpha \cdot u + \alpha \cdot v$$

Scalar multiplication identity:
$$1 \cdot (u) = u$$

Linear Functions



A function f is linear if:

$$f(u+v) = f(u) + f(v)$$
 $f(au) = a f(u)$

Iclicker question

$$f(u+v) = \frac{|u+v|}{u+v}$$

 $f(x) = \frac{|x|}{x}, \ f: \mathcal{R} \to \mathcal{R}$

A)YES

2) Is $f(x) = a x + b, f: \mathcal{R} \to \mathcal{R}, a, b \in \mathcal{R} \text{ and } a, b \neq 0$

a linear function?

a linear function? A)YES

 $f(u+v) = \alpha(u+v)+b = \alpha u + \alpha v + b < f$ $f(u) = \alpha u+b$ $f(u) + f(v) = \alpha(u+v)+2b$ $f(v) = \alpha v+b$ $f(v) = \alpha(u+v)+2b$

Matrices
$$n \times m\text{-matrix} \quad \mathbf{A} = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1m} \\ A_{21} & A_{22} & \cdots & A_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nm} \end{bmatrix}$$

- Linear functions f(x) can be represented by a Matrix-Vector multiplication.
- Think of a matrix \bf{A} as a linear function that takes vectors \bf{x} and transforms them into vectors **y**

$$y = f(x) \rightarrow y = A x$$

Hence we have:

$$A (u + v) = A u + A v$$
$$A (\alpha u) = \alpha A u$$

Matrix-Vector multiplication

- Recall summation notation for matrix-vector multiplication y = A x
- You can think about matrix-vector multiplication as:

Dot product of \boldsymbol{x} with rows of \boldsymbol{A}

$$\mathbf{A} = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1m} \\ A_{21} & A_{22} & \cdots & A_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nm} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_n \end{bmatrix} \begin{bmatrix} A_{1}, \vdots \\ A_{2}, \vdots \\ X_n \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ A_{3}, \vdots \\ X_n \end{bmatrix}$$

Matrix-Vector multiplication

- Recall summation notation for matrix-vector multiplication y = A x
- You can think about matrix-vector multiplication as:

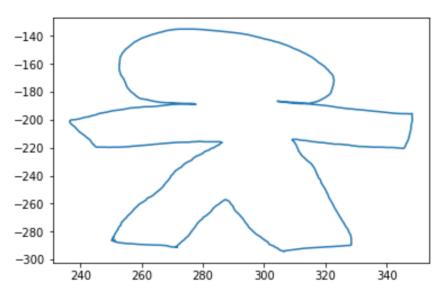
Linear combination of column vectors of **A**

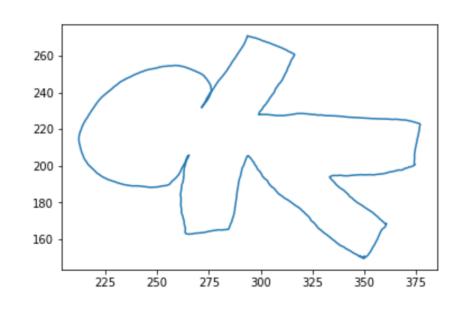
$$y_{i} = \sum_{j=1}^{m} A_{ij} x_{j} =$$

$$y'_{j} = x_{i} A[:,1] + x_{2} A[:,2] + \dots + x_{n} A[:,n]$$
scalar vector

$$\mathbf{A} = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1m} \\ A_{21} & A_{22} & \cdots & A_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nm} \end{bmatrix}$$

Matrices operating on data





Data set: X

Data set: y

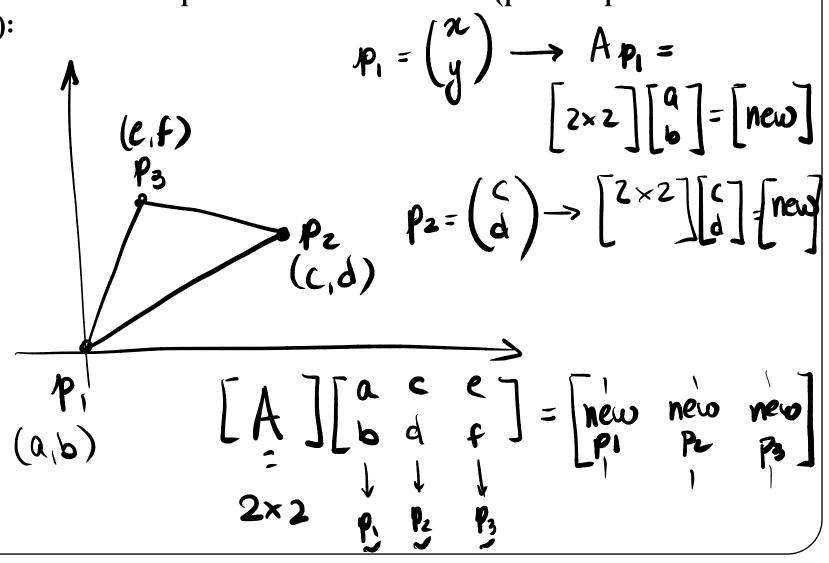
$$y = f(x)$$

or

$$y = A x$$

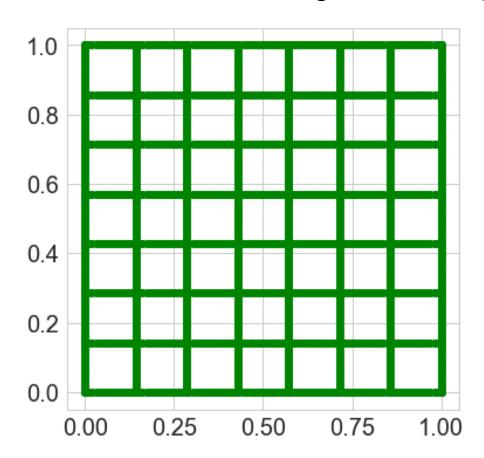
Example: Shear operator

Matrix-vector multiplication for each vector (point representation in 2D):



Matrices as operators

- **Data**: grid of 2D points
- Transform the data using matrix multiply

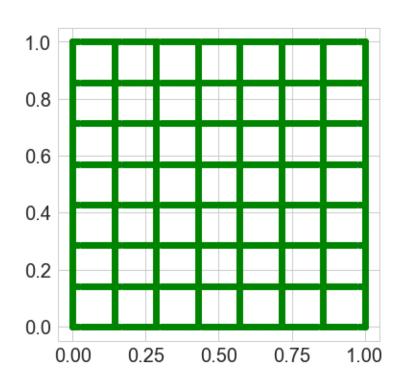


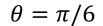
What can matrices do?

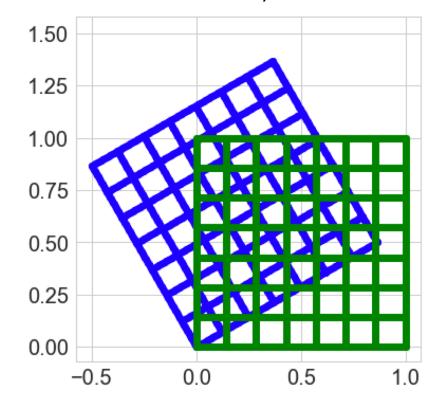
- 1. Shear
- 2. Rotate
- 3. Scale
- 4. Reflect
- 5. Can they translate?

Rotation operator

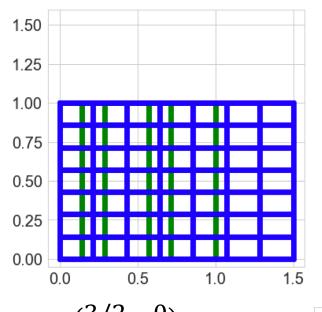
$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$



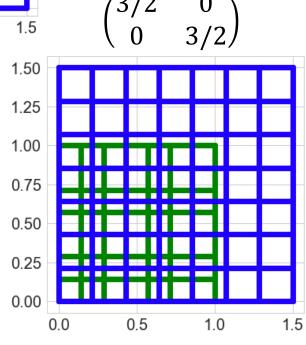


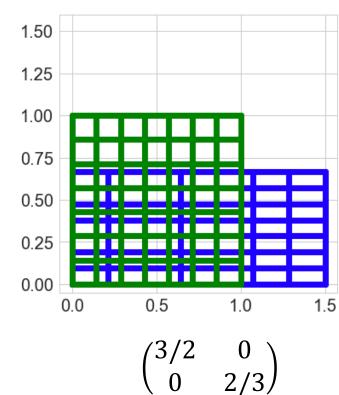


Scale operator



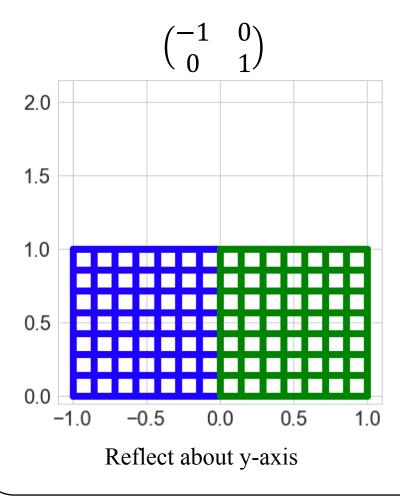
$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

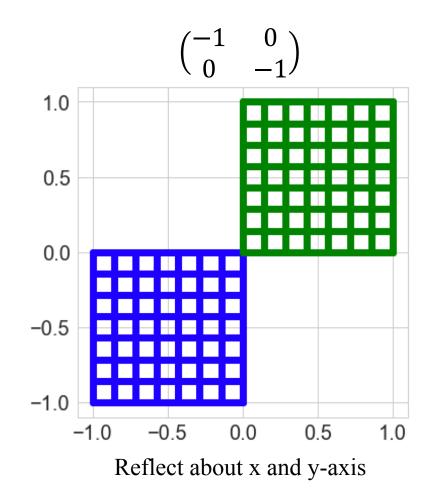




Reflection operator

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} -a & 0 \\ 0 & -b \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

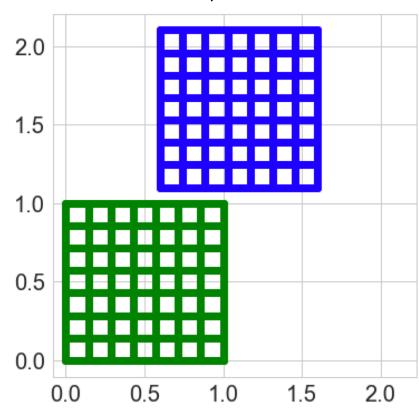




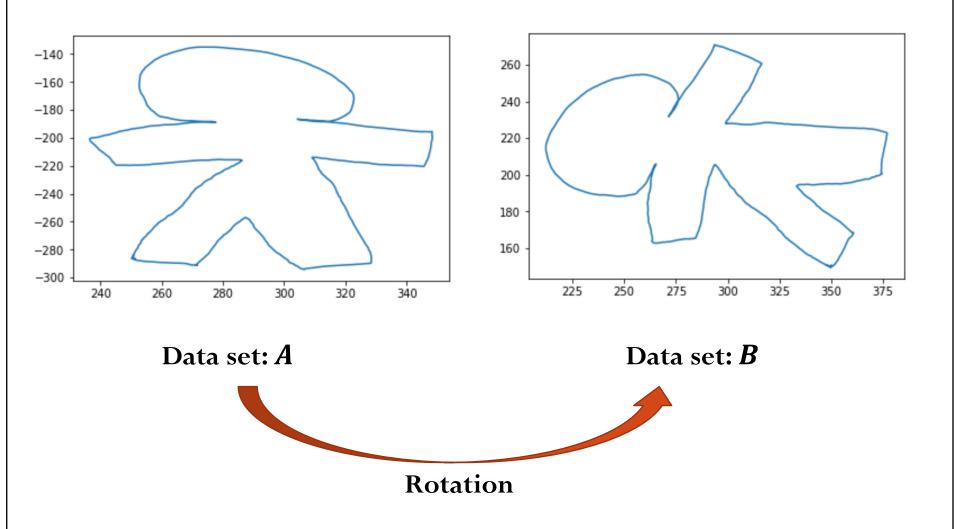
Translation (shift)

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} a \\ b \end{pmatrix}$$

$$a = 0.6$$
; $b = 1.1$



Matrices operating on data



Demo "Matrices for geometry transformation"

Notation and special matrices

- Square matrix: m = n
- Zero matrix: $A_{ij} = 0$
- Identity matrix $[\boldsymbol{I}] = [\delta_{ij}]$
- Symmetric matrix: $A_{ij} = A_{ji}$ $[\mathbf{A}] = [\mathbf{A}]^T$
- Permutation matrix:

 - Permutes (swaps) rows
- Diagonal matrix: $A_{ij} = 0$, $\forall i, j \mid i \neq j$
- Triangular matrix:

Lower triangular:
$$L_{ij} = \begin{cases} L_{ij}, i \ge j \\ 0, i < j \end{cases}$$

$$\delta_{ij} = \left\{ \begin{array}{ll} 1 & i = j \\ 0 & i \neq j \end{array} \right.$$

• Permutation of the identity matrix
$$\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} c \\ a \\ b \end{pmatrix}$$

Upper triangular:
$$U_{ij} = \begin{cases} U_{ij}, i \leq j \\ 0, i > j \end{cases}$$

More about matrices

- Rank: the rank of a matrix **A** is the dimension of the vector space generated by its columns, which is equivalent to the number of linearly independent columns of the matrix.
- Suppose *A* has shape $m \times n$:
 - $rank(A) \leq min(m, n)$
 - Matrix A is full rank: rank(A) = min(m, n). Otherwise, matrix A is rank deficient.
- Singular matrix: a square matrix A is invertible if there exists a square matrix B such that AB = BA = I. If the matrix is not invertible, it is called singular.

Norms

What's a norm?

- · A generalization of 'absolute value' to vectors.
- $f(x): \mathbb{R}^n \to \mathbb{R}_0^+$, returns a 'magnitude' of the input vector
- In symbols: Often written ||x||.

Define norm.

A function $\|\mathbf{x}\|: \mathbb{R}^n \to \mathbb{R}_0^+$ is called a norm if and only if

- 1. $\|\mathbf{x}\| > 0 \Leftrightarrow \mathbf{x} \neq \mathbf{0}$.
- 2. $\|\gamma \mathbf{x}\| = |\gamma| \|\mathbf{x}\|$ for all scalars γ .
- 3. Obeys triangle inequality $||x + y|| \le ||x|| + ||y||$

Example of Norms

What are some examples of norms?

The so-called *p*-norms:

$$\left\| \begin{pmatrix} x_1 \\ x_n \end{pmatrix} \right\|_p = \sqrt[p]{|x_1|^p + \dots + |x_n|^p} \quad (p \geqslant 1)$$

 $p = 1, 2, \infty$ particularly important

$$P=1 \Rightarrow \| \times \|_{1} = \| \times \| + \| \times \| + \| \times \|$$

$$P=2 \Rightarrow \| \times \|_{2} = \| \times \|^{2} + \| \times \|^{2} + \| + \| \times \|^{2}$$

$$P=0 \Rightarrow \| \times \|_{0} = \max \| \times \|$$

Unit Ball: Set of vectors \mathbf{x} with norm $||\mathbf{x}|| = 1$

Norms and Errors

If we're computing a vector result, the error is a vector. That's not a very useful answer to 'how big is the error'. What can we do?

Apply a norm!

How? Attempt 1:

Magnitude of error \neq ||true value||-||approximate value|| WRONG!

Attempt 2:

Magnitude of error = ||true value - approximate value||

Absolute and Relative Errors

What are the absolute and relative errors in approximating the location of Siebel center (40.114, -88.224) as (40, -88) using the 2-norm?

Matrix Norms

What norms would we apply to matrices?

Easy answer: 'Flatten' matrix as vector, use vector norm.
 This corresponds to an entrywise matrix norm called the Frobenius norm,

$$||A||_F := \sqrt{\sum_{i,j} a_{ij}^2}.$$

Induced Matrix Norms max $\|Ax\|_p =$ $\|x\|_p = 1$ || AX || max ||x||+0 ||x||_P $y_1 = A \times_1 \rightarrow \|y_1\|_2 =$ $y_2 = A \times_2 \rightarrow \|y_2\|_2 =$ yi = Axi - Il yilla= ||A||2 = max || yi ||2

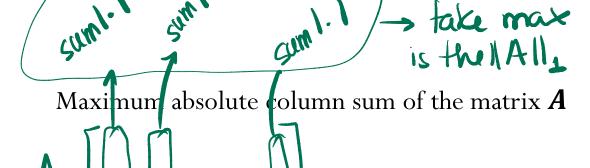
Induced Matrix Norms

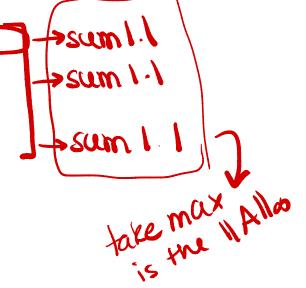
$$||A||_1 = \max_j \sum_{i=1}^n |A_{ij}|$$

$$||A||_{\infty} = \max_{i} \sum_{i=1}^{n} |A_{ij}|$$

$$\|\mathbf{A}\|_2 = \max_{k} \sigma_k$$

 σ_k are the singular value of the matrix $m{A}$





Properties of Matrix Norms

Matrix norms inherit the vector norm properties:

- 1. $||A|| > 0 \Leftrightarrow A \neq \mathbf{0}$.
- 2. $\|\gamma A\| = |\gamma| \|A\|$ for all scalars γ .
- 3. Obeys triangle inequality $||A + B|| \le ||A|| + ||B||$

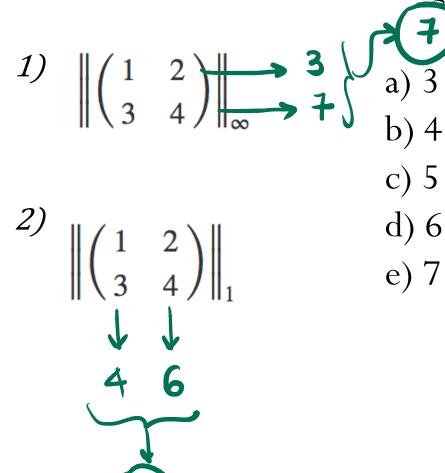
But also some more properties that stem from our definition:

- 1. $||Ax|| \leq ||A|| ||x||$
- 2. $||AB|| \le ||A|| ||B||$ (easy consequence)

Both of these are called submultiplicativity of the matrix norm.

Iclicker question

Determine the norm of the following matrices:



Iclicker question

Matrix Norm Approximation

Suppose you know that for a given matrix A three vectors \mathbf{x} , \mathbf{y} , \mathbf{z} for the vector norm $\|\cdot\|$,

$$\|\mathbf{x}\| = 2$$
, $\|\mathbf{y}\| = 1$, $\|\mathbf{z}\| = 3$,

and for corresponding induced matrix norm,

$$||A\mathbf{x}|| = 20, ||A\mathbf{y}|| = 5, ||A\mathbf{z}|| = 90.$$

What is the largest lower bound for ||A|| that you can derive from these values?

a) 90

mox
$$\{ ||Ax||, ||Ay||, ||Az|| \}$$
c) 20
d) 10
e) 5

 $= \max_{0.5} \{ ||Ax||, ||Ay||, ||Az|| \}$
 $= \max_{0.5} \{ ||ay||, ||Az|| \}$
 $= \max_{0.5} \{ ||ay||, ||Az|| \}$
 $= \max_{0.5} \{ |ay||, ||Az|| \}$

Induced Matrix Norm of a Diagonal Matrix

What is the 2-norm-based matrix norm of the diagonal matrix

$$A = \begin{bmatrix} 100 & 0 & 0 \\ 0 & 13 & 0 \\ 0 & 0 & 0.5 \end{bmatrix}$$
?

singular values of diagonal matrix are the

diogonal entries.

Singular values of A = {100,13,0.5}

we will show this later when introduce SVD.

Induced Matrix Norm of an Inverted Diagonal Matrix

What is the 2-norm-based matrix norm of the inverse of the diagonal matrix

$$A = \begin{bmatrix} 100 & 0 & 0 \\ 0 & 13 & 0 \\ 0 & 0 & 0.5 \end{bmatrix}$$
?

$$A^{-1} = \begin{bmatrix} 1/100 \\ 1/13 \\ 1/0.5 \end{bmatrix}$$

$$Sing(A') = \{\frac{1}{100}, \frac{1}{13}, \frac{1}{0.5}\}$$