/ Side note: \
Cost of LU factorization .

1
Zi=§m(m+1)

## Algorithm 1 =1

## Factorization using the block-format, m

## creating new méftrices L and U Ziz _ lm(m+ DC2m+1)
## and not modifying A 6

: ; : : . =1
print ("LU factorization using Algorithm 1") '

L = np.zeros((n,n))
U = np.zeros((n,n))
M = A.copy()
for i in range(n):
Uri,i:] = M[i,i:]
L{i:,i] = M[i:,i1/U[i,1]
M[i+1l:,i+1l:] -= np.outer(L[i+1:,1i],U[i,i+1:])

Number of divisions: (n — 1)+ (n —2)+ -+ 1 =nn — 1)/2

Number of multiplications (n — 1)2 + (n — 2)2 + ...+ (1)2 ? — — -|_ %
2
Number of subtractions: (n — 1)2 + (n — 2)2 + ...+ (1)2 = n? — n7 + 761

L

Computational complexity is O (n®)
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Iclicker question

Which of the following statements are true about the LU factorization of an n X n
matrix A, assuming LU factorization of A exists and not considering any
row/column interchanges?

Select all that apply:
Ha=Lv. TRM
—
2) LU factorization is exactly performing Gaussian elimination. ' Nf.
3) We can solve for LUx = b instead of solving Ax = b to obtain x. m

4—) L is a lower triangular matrix, and is exactly the lower part of A but with

unit diagonal. msb

) U is an upper triangular matrix, and is exactly the upper part of A

(including diagonal). fajﬁ({

[A)1,2.3)

<

B)1,2,3,5
0)1,3
D)1,2,3,4,5
E)4,5




Solving linear systems

In general, we can solve a linear system of equations following the steps:

1) Factorize the matrix A: A = LU (Complexity 0 (Tlg))
2) Solve L'y = b (complexity O (nz))
3) Solve Ux = y (complexity 0 (le))

But Why should we decouple the factorization from the actual solve?

Remember from Linear Aloebra. Gaussian Elimination does not
g )

) Think cboul solving
A =l Ror dbkrent
;\\@V\i‘—\no«\c& s\des b

decouple these two steps. ..




Linear System of Equations -

Conditioning
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Numerical experiments

Input has uncertainties:

* Errors due to representation with finite precision
* Error in the sampling

Once you select your numerical method , how much error
should you expect to see in your output?

Is your method sensitive to errors (perturbation) in the input?

K Demo “image—blur—inverse—v3”

Demo “HilbertMatrix-ConditionNumber”

/
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Is your method sensitive to errors (perturbation) in the input?
How much noise can we add to the input data?
How can we define “little” amount of noise? Should be relative with the

magnitude of the data.

™




4 ™
Sensitivity of Solutions of Linear Systems

Suppose we start with a non-singular system of linear equations A x = b.
We change the right-hand side vector b (input) by a small amount Ab.

How much the solution x (output) changes, 1.e., how large 1s Ax?
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/ Demo “HilbertMatrix- ConditionNumber’}

Condition number

The condition number 1s a measure of sensitivity of solving a linear system
of equations to variations in the input.
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Iclicker question

Give an example of a matrix that is very well-conditioned (i.e.,
has a condition number that is good for computation). Select

the best possible condition number(s) of a matrix?

DreondtAr<6 | cond(h) - \\A\\\\M\ and HAN >
tric
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Condition number

1Ax 1l _ |Ab|

] = M@

Small condition numbers mean not a lot of error amplification. Small
condition numbers are good!

The 1dentity matrix should be well-conditioned:

1| = max 1T x|l =1

It turns out that this 1s the smallest possible condition number:
cond(4) = [|lA7H| |4l = lA7*All = ||| = 1

If A~ does not exist, then cond(A) = oo (by convention)
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Recall Induced Matrix Norms

n
” A ” 1 = max z | Ai ]l Maximum absolute column sum of the matrix 4
]
=1

n

|A||oc = max E |Ai jl Maximum absolute row sum of the matrix A
l
=1

lAll; = max

Oy are the singular value of the matrix A




Iclicker question

Condition Number of a Diagonal Matrix

What is the 2-norm-based condition number of the diagonal matrix

100 0 0 ]
A= 0 13 o0 [?
0 0 05]




About condition numbers

1. For any matrix A, cond(4) =1
2. For the identity matrix I, cond(I) =1

3. For any matrix A and a nonzero scalar y, cond(yA) = cond(A)

max|d;|

4. For any diagonal matrix D, cond(D) =

min|d;|

5. The condition number 1s a measure of how close a matrix is to being
singular: a matrix with large condition number 1s nearly singular,
whereas a matrix with a condition number close to 1 is far from being
singular

6. The determinant of a matrix i1s NOT a good indicator 1s a matrix is near
singularity




Iclicker question

The need for pivoting depends on whether the matrix is

Hen
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A ) A singular matrix does not have a solution Folse &Q\w ‘' “s\lf% \/;“\ o'
b ) A matrix is well conditioned if its condition number is less or equal to 1 Q’\l')

C ) A nonsingular matrix always has a solution | k€

D) 1-norm of a matrix is;the absolute column sum fm&t
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Condition Number of Orthogonal

Matrices

What is the 2-norm condition number of an orthogonal matrix A?
cond(4) = lA7"lz lAllz = ||AT],llAll; = 1

That means orthogonal matrices have optimal conditioning.

They are very well-behaved in computation.




e

™
Residual versus error

Our goal is to find the solution x to the linear system of equations A x = b

Let us recall the solution of the perturbed problem
A

X = X + AX
oo o B a8 e e, (I AR 5
=dUNcu, O (A%AA)X ~ bt Ab

N\ />\<\\ o laulr Lo don T Bnew \\X\\b\
c =\% -

|5 define M Tesiduol e ek

N WL WO o ininalae

c - Ax —b M aocor, Bub m& ony
~ = = - Ynow) how W YagAre

MNL WJQK‘M ~ - /




4 | ™
Residual versus error
%3 SWiNg Ax - b with L fadborizahon,

SR reslaso U AX -0 cahsfies B «Cot\omi@x

(Lo
1221 ]|

Where c is large without pivoting and small with partial pivoting.
Therefore, Gaussian elimination with partial pivoting yields small relative
residual regardless of conditioning of the system.
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Residual versus error

Let us first obtain the norm of the error:;
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Relative residual: Il
IA]l]|x]|

-

Demo “Rule of Thumb on Conditioning”

Iclicker question

When solving a system of linear equations via LU with
partial pivoting, which of the following is guaranteed to
be small?

laxl o oW ds s ue 7
1] o tond (A s
Neo smadl !

B) Relative error:

C) Neither one of them

D) Both of them

™
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Rule of thumb for conditioning

Suppose we want to find the solution x to the linear system of equations
A x = b using LU factorization with partial pivoting and backward/forward
substitutions.

Suppose we compute the solution X.

If the entries in A and b are accurate to S decimal digits,

and cond(4) = 10Y%,

then the elements of the solution vector X will be accurate to about

S—-w
decimal digits




Rule of Hhumb
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Iclicker question

Matrix Conditioning: Accurate digits + voint

Let's say we want to solve the following linear system:
Ax=0>b

Assuming you are working with IEEE double precision floating point numbers, how many digits of
accuracy will your answer have if k(A) = 10007?

doubke Precision —> Ab hae

A) 3 e o e
B 1 \o d\@’fﬁ .~
Q) 13 Mo, oubpub (ownswer L) will have

E) 3 (6 -W) g

- /




Sparse Systems
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Sparse Matrices

Some type of matrices contain many Zeros.

Storing all those zero entries is wasteful!

How can we efficiently store large

matrices without storing tons of zeros? T .

* Sparse matrices (vague definition): matrix with few non-zero entries.
* For practical purposes: an M XN matrix is sparse if it has O (min(m, n))

non-zero entries.

* This means roughly a constant number of non-zero entries per row and
column.

* Another definition: “matrices that allow special techniques to take advantage

of the large number of zero elements” (J. Wilkinson)
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Sparse Matrices: Goals

* Perform standard matrix computations economically, i.e.,
without storing the zeros of the matrix.

* For typical Finite Element and Finite Difference matrices, the number of

non-zero entries is 0 (Tl)




4 ™
Sparse Matrices: MP example
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Sparse Matrices

EXAMPLE:

Number of operations required to add two square dense matrices:

0(n?%)

Number of operations required to add two sparse matrices A and B:

O(nnz(A) + nnz(B))

where NNZ(X) = number of non-zero elements of a matrix X
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Popular Storage Structures

DNS Dense ELL Ellpack-Itpack
BND Linpack Banded DIA Diagonal
COO Coordinate BSR Block Sparse Row

CSR  Compressed Sparse Row SSK  Symmetric Skyline
CSC Compressed Sparse Column BSR Nonsymmetric Skyline
MSR Modified CSR JAD Jagged Diagonal

LIL  Linked List

note: CSR = CRS, CCS = CSC, SSK = SKS in some references

We will focus on COO and CSR!
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Dense (DNS)

Ashape = (nrow, ncol)

\
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Row 0O

. Simple
* Row-wise
* Easy blocked formats

* Stores all the zeros

|

Row 1

f f

Row 2 Row 3
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Coordinate (CO0)
o

dabis — Flock 0. 1.9
ol o int 4 _[03 0
4.4 5.8

0. 0.

o L4 3 o 2
Owo -s[ (® ) o 1 =

* Does not store the zéfo elements
* Not sorted

* row and col: array of integers

L

data: array of doubles
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Example

Representing a Sparse Matrix in
Coordinate (COO) Form

Consider the following matrix:

1 point

[ 0 0 1.3]
-15 02 O
A=| 5 0 0
0 03 3
0 0 0

Suppose we store one row index (a 32-bit integer), one column index (a 32-bit
integer), and one data value (a 64-bit float) for each non-zero entry in A. How many
bytes in total are stored? Please note that 1 byte is equal to 8 bits.

shoe 6 Hoaks + \Znlegcs
(6464 +2¥32)bits = % ke

A) 56 bytes

B)

72 bytes

C) 96 bytes
D) 120 bytes

E)

144 bytes




