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(Unsigned) Fixed-point representation
The numbers are stored with a fixed number of bits for the integer part 
and a fixed number of bits for the fractional part.

Suppose we have 8 bits to store a real number, where 5 bits store the 
integer part and 3 bits store the fractional part:
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(Unsigned) Fixed-point representation
Suppose we have 64 bits to store a real number, where 32 bits store the 
integer part and 32 bits store the fractional part:
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(Unsigned) Fixed-point representation
Range: difference between the largest and smallest numbers possible. 

More bits for the integer part ⟶ increase range

Precision: smallest possible difference between any two numbers
More bits  for the fractional part ⟶ increase precision

Wherever we put the binary point, there is a trade-off between  the 
amount of range and precision. It can be hard to decide how much 
you need of each!
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Scientific Notation

In scientific notation, a number can be expressed in the form

! = ± $ × 10(

where $ is a coefficient in the range 1 ≤ $ < 10 and + is the exponent. 

1165.7 =

0.0004728 =



Floating-point numbers
A floating-point number can represent numbers of different order of 
magnitude (very large and very small) with the same number of fixed bits.

In general, in the binary system, a floating number can be expressed as

! = ± $ × 2'
$ is the significand, normally a fractional value in the range [1.0,2.0)

. is the exponent



Floating-point numbers

Numerical Form:

! = ±$ × 2' = ±(). (+(,(- …(/× 2'

Fractional part of significand
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Normalized floating-point numbers
Normalized floating point numbers are expressed as 

! = ± 1. &'&(&) …&+× 2. = ± 1. / × 2.

where / is the fractional part of the significand, 0 is the exponent and 
&1 ∈ 0,1 .
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Converting floating points

Convert (39.6875)*+ = 100111.1011 / into floating point 
representation



Iclicker question
Determine the normalized floating point representation 
1. # × 2& of the decimal number ' = 47.125 (# in binary 
representation and & in decimal)

A) 1.01110001 / × 20
B) 1.01110001 / × 22
C) 1.01111001 / × 20
D) 1.01111001 / × 22
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• Exponent range:

• Precision:

• Smallest positive normalized FP number:  

• Largest positive normalized FP number: 

Normalized floating-point numbers

! = ± $ × 2'= ± 1. *+*,*- …*/× 2' = ± 1. 0 × 2'
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Floating-point numbers: Simple example
A ”toy” number system can be represented as ! = ±1. &'&(×2+
for , ∈ [−4,4] and &3 ∈ {0,1}.
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Floating-point numbers: Simple example
A ”toy” number system can be represented as ! = ±1. &'&(×2+
for , ∈ [−4,4] and &3 ∈ {0,1}.
1.00 ( ×27 = 1
1.01 ( ×27 = 1.25
1.10 ( ×27 = 1.5
1.11 ( ×27 = 1.75

1.00 ( ×2:' = 0.5
1.01 ( ×2:' = 0.625
1.10 ( ×2:' = 0.75
1.11 ( ×2:' = 0.875

1.00 ( ×2' = 2
1.01 ( ×2' = 2.5
1.10 ( ×2' = 3.0
1.11 ( ×2' = 3.5

1.00 ( ×2( = 4.0
1.01 ( ×2( = 5.0
1.10 ( ×2( = 6.0
1.11 ( ×2( = 7.0

1.00 ( ×2> = 8.0
1.01 ( ×2> = 10.0
1.10 ( ×2> = 12.0
1.11 ( ×2> = 14.0

1.00 ( ×2? = 16.0
1.01 ( ×2? = 20.0
1.10 ( ×2? = 24.0
1.11 ( ×2? = 28.0

1.00 ( ×2:( = 0.25
1.01 ( ×2:( = 0.3125
1.10 ( ×2:( = 0.375
1.11 ( ×2:( = 0.4375

1.00 ( ×2:> = 0.125
1.01 ( ×2:> = 0.15625
1.10 ( ×2:> = 0.1875
1.11 ( ×2:> = 0.21875

1.00 ( ×2:? = 0.0625
1.01 ( ×2:? = 0.078125
1.10 ( ×2:? = 0.09375
1.11 ( ×2:? = 0.109375

Same steps are performed to obtain the negative numbers. For simplicity, we 
will show only the positive numbers in this example.
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! = ±1. &'&(×2+ for , ∈ [−4,4] and &3 ∈ {0,1}

• Smallest normalized positive number: 

• Largest normalized positive number:

2h = 2-4=0.0625

It' ( I - 2-t ) = 28



! = ±1. &'&(×2+ for , ∈ [−4,4] and &3 ∈ {0,1}

Machine epsilon
• Machine epsilon (7+): is defined as the distance (gap) between 1 and the 

next largest floating point number.
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Machine numbers: how floating point 
numbers are stored?



Floating-point number representation
What do we need to store when representing floating point 
numbers in a computer?

! = ± 1. & × 2)

! = ± * +
sign exponent significand

Initially, different floating-point representations were  used in computers, 
generating inconsistent program behavior across different machines.

Around 1980s, computer manufacturers started adopting a standard 
representation for floating-point number: IEEE (Institute of Electrical and 
Electronics Engineers) 754 Standard.



Floating-point number representation
Numerical form:

! = ± 1. & × 2)

Representation in memory:
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Precisions:

IEEE-754 Single precision (32 bits):

IEEE-754 Double precision (64 bits):
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IEEE-754 Single Precision (32-bit)
! = (−1)' 1. ) × 2,

sign 
(1-bit)

exponent
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significand
(23-bit)

- . = / + -ℎ234 3
↳-126
0=127

p - 24

C = 000000072=0110 Of C f 255
C -41111111112=255 set aside c-- O

C --255

I f e f 2540¥fl%oicea
,
offfhift

/ gmtshifts 254
f-lzgfmf.be#



I f C f 254
M→

I f Mt shift E 254| fshift=l27J choice !I - 127 f M S 254- 127

-126 S ME 127 23

praise
-8



C = 101110010)
C -- Mt shift

M - c - shift



IEEE-754 Single Precision (32-bit)

! = (−1)' 1. ) × 2,

67.125 = 1000011.001 1 = 1.000011001 1×22

Example: Represent the number ! = −67.125 using IEEE Single-
Precision Standard



• Machine epsilon (!"): is defined as the distance (gap) between 1 
and the next largest floating point number. 

# = (−1)) 1. + × 2. = / = 0 + 127

IEEE-754 Single Precision (32-bit)
) 3 +

• Smallest positive normalized FP number:

• Largest positive normalized FP number: 
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