Floating point representation

$$
\begin{array}{ll}
n \longrightarrow t \\
10 \longrightarrow 2 s \\
10^{3} \longrightarrow 40 s
\end{array} \quad \begin{aligned}
& t=c n^{\alpha} \\
& 2=c 10^{\alpha} \\
& 40=c(10)^{3 \alpha}
\end{aligned}
$$

(Unsigned) Fixed-point representation

The numbers are stored with a fixed number of bits for the integer part and a fixed number of bits for the fractional part.

Suppose we have 8 bits to store a real number, where 5 bits store the integer part and 3 bits store the fractional part:

$$
\left(\begin{array}{lllllllll}
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1
\end{array}\right)_{2^{4}}^{2^{3}} 2^{2} 2^{2} 2^{1} 2^{0} 2^{-1} 2^{-2} 2^{2-3}
$$

semememe $(00000.001)_{2}=(0.125)$, Largest number: $(11|1|,|l|)_{2}=(31.875)_{10}$

(Unsigned) Fixed-point representation

Suppose we have 64 bits to store a real number, where 32 bits store the integer part and 32 bits store the fractional part:

$$
\begin{aligned}
& \left(a_{31} \ldots a_{2} a_{1} a_{0} \cdot b_{1} b_{2} b_{3} \ldots b_{32}\right)_{2}=\sum_{k=0}^{31} a_{k} 2^{k}+\sum_{k=1}^{32} b_{k} 2^{-k} \\
& =a_{31} \times 2^{31}+a_{30} \times 2^{30}+\cdots+a_{0} \times 2^{0}+b_{1} \times 2^{-1}+b_{2} \times 2^{2}+\cdots+b_{32} \times 2^{-32}
\end{aligned}
$$

largest: $111 \ldots 11.111 \ldots 11 \approx 10^{9}$

(Unsigned) Fixed-point representation

Range: difference between the largest and smallest numbers possible. More bits for the integer part \longrightarrow increase range

Precision: smallest possible difference between any two numbers More bits for the fractional part \longrightarrow increase precision

$$
\left(a_{2} a_{1} a_{0} \cdot b_{1} b_{2} b_{3}\right)_{2} \quad \text { OR } \quad\left(a_{1} a_{0} \cdot b_{1} b_{2} b_{3} b_{4}\right)_{2}
$$

Wherever we put the binary point, there is a trade-off between the amount of range and precision. It can be hard to decide how much you need of each!

Scientific Notation

In scientific notation, a number can be expressed in the form

$$
x= \pm r \times 10^{m}
$$

where r is a coefficient in the range $1 \leq r<10$ and m is the exponent.
$1165.7=$
$0.0004728=$

Floating-point numbers

A floating-point number can represent numbers of different order of magnitude (very large and very small) with the same number of fixed bits.

In general, in the binary system, a floating number can be expressed as

$$
x= \pm q \times 2^{m}
$$

q is the significand, normally a fractional value in the range $[1.0,2.0$)
m is the exponent

Floating-point numbers

Numerical Form:

Precision: $p=n+1$

Normalized floating-point numbers
Normalized floating point numbers are expressed as

$$
x= \pm 1 . b_{1} b_{2} b_{3} \ldots b_{n} \times 2^{m}= \pm 1 . f \times 2^{m}
$$

where f is the fractional part of the significand, m is the exponent and $b_{i} \in\{0,1\}$.
store 5 bits

$$
\begin{aligned}
& \quad b_{0} b_{1} b_{2} b_{3} b_{9} \rightarrow p=5 \text { bits } \\
& 1 . b_{1} b_{2} b_{3} b_{4} b_{5} \rightarrow p=6
\end{aligned}
$$

hidden bit representation $\rightarrow{ }^{\prime \prime}$ gain " 1 bit of precision

Converting floating points

Convert $(39.6875)_{10}=(100111.1011)_{2}$ into floating point representation

Iclicker question

 meet.ps lcs357Determine the normalized floating point representation 1. $\boldsymbol{f} \times 2^{\boldsymbol{m}}$ of the decimal number $\boldsymbol{x}=47.125(\boldsymbol{f}$ in binary representation and \boldsymbol{m} in decimal)
A) $(1.01110001)_{2} \times 2^{5} \quad(47.125)_{10}=(101111.011)_{2}$ B) $(1.01110001)_{2} \times 2^{4}$
C) $(1.01111001)_{2} \times 2^{5}$
1.01111011×2^{5}
D) $(1.01111001)_{2} \times 2^{4}$

Normalized floating-point numbers

$$
x= \pm q \times 2^{m}= \pm 1 . b_{1} b_{2} b_{3} \ldots b_{n} \times 2^{m}= \pm[1] f \times 2^{m}
$$

- Exponent range: $m \in[L, U]$
- Precision: $p=n+1 \quad n$: \#bits in f
- Smallest positive normalized EP number:
$1 . \underbrace{000 \ldots 00}_{n} \times 2^{L}=2^{L}$
- Largest positive normalized FP number:
$1 . \underbrace{111 \cdots \cdot 11}_{n} \times 2^{0}=2^{0+1}\left(1-2^{-p}\right)$

Floating-point numbers: Simple example A "toy" number system can be represented as $x= \pm 1 . b_{1} b_{2} \times 2^{m}$

$$
\begin{aligned}
& m=-8|m=-2| m=-3 \mid m=-4
\end{aligned}
$$

Floating-point numbers: Simple example

A "toy" number system can be represented as $x= \pm 1 . b_{1} b_{2} \times 2^{m}$ for $m \in[-4,4]$ and $b_{i} \in\{0,1\}$.
$(1.00)_{2} \times 2^{0}=1$
$(1.01)_{2} \times 2^{0}=1.25$
$(1.00)_{2} \times 2^{1}=2$
$(1.10)_{2} \times 2^{0}=1.5$
$(1.01)_{2} \times 2^{1}=2.5$
$(1.11)_{2} \times 2^{0}=1.75$
$(1.11)_{2} \times 2^{1}=3.5$
$2^{\min ^{4}\left(1-22^{2}+2^{2}\right)}=2^{5}\left(1-2^{-5}\right)$
$(1.00)_{2} \times 2^{2}=4.0$
$(1.01)_{2} \times 2^{2}=5.0$
$(1.10)_{2} \times 2^{2}=6.0$
$(1.11)_{2} \times 2^{2}=7.0$
$(1.00)_{2} \times 2^{3}=8.0$
$(1.00)_{2} \times 2^{4}=1 \phi .0$
$(1.00)_{2} \times 2^{-1}=0.5$
$(1.01)_{2} \times 2^{3}=10.0$
$(1.01)_{2} \times 2^{4}=20.0$
$(1.01)_{2} \times 2^{-1}=0.625$
$(1.10)_{2} \times 2^{3}=12.0$
$(1.11)_{2} \times 2^{3}=14.0$
$(1.11)_{2} \times 2^{4}=28.0$
$(1.10)_{2} \times 2^{-1}=0.75$
$(1.11)_{2} \times 2^{-1}=0.875$
2^{2}
$(1.00)_{2} \times 2^{-2}=0.25$
$(1.00)_{2} \times 2^{-3}=0.125$
$(1.00), \times 2^{-4}=0.0625$
$(1.01)_{2} \times 2^{-2}=0.3125$
$(1.01)_{2} \times 2^{-3}=0.15625$
$(1.01)_{2} \times 2^{-4}=0.078125$
$(1.10)_{2} \times 2^{-2}=0.375 \quad(1.10)_{2} \times 2^{-3}=0.1875$
$(1.10)_{2} \times 2^{-4}=0.09375$
$(1.11)_{2} \times 2^{-2}=0.4375$
$(1.11)_{2} \times 2^{-3}=0.21875$
$(1.11)_{2} \times 2^{-4}=0.109375$
Same steps are performed to obtain the negative numbers. For simplicity, we will show only the positive numbers in this example.
$x= \pm 1 . b_{1} b_{2} \times 2^{m}$ for $m \in[-4,4]$ and $b_{i} \in\{0,1\}$

- Smallest normalized positive number:

$$
2^{2}=2^{-4}=0.0625
$$

- Largest normalized positive number:

$$
2^{0+1}\left(1-2^{-p}\right)=28
$$

Machine epsilon $\quad \epsilon_{m}=2^{-n} \| 2^{-2}$
Machine epsilon $\left(\epsilon_{m}\right)$: is defined as the distance (gap) between 1 and the next largest floating point number.
$x= \pm 1 . b_{1} b_{2} \times 2^{m}$ for $m \in[-4,4]$ mad $b_{i} \in\{0,1\}$

$$
\begin{aligned}
x \Rightarrow & \frac{1.0000 \ldots .00}{n} \times 2^{0} \\
& \frac{1.000 \ldots .01 \times 2^{0}}{0.000 \ldots 0011 \times 2^{0}}=2^{-n}
\end{aligned}
$$

Machine numbers: how floating point numbers are stored?

Floating-point number representation

What do we need to store when representing floating point numbers in a computer?

$$
x= \pm 1 . f \times 2^{m}
$$

Initially, different floating-point representations were used in computers, generating inconsistent program behavior across different machines.

Around 1980s, computer manufacturers started adopting a standard representation for floating-point number: IEEE (Institute of Electrical and Electronics Engineers) 754 Standard.

Floating-point number representation

Numerical form:

Representation in memory:

$$
x=\sin _{\text {ungned }}^{S|C=m+s h i f t|} \quad f
$$

Precisions:

IEEE-754 Single precision (32 bits):

IEEE-754 Double precision (64 bits):

IEEE-754 Single Precision (32-bit)

$c=(00000000)_{2}=(0)_{10} \quad 0 \leqslant c \leqslant 255$
$c=(1111|I|$_{2}=255\) set aside $\begin{aligned} & c=0 \\ & c=255\end{aligned}$

$$
c=255
$$

$$
1 \leqslant c \leqslant 254
$$

(0000000 kc $\leqslant(11111110)$

$$
\begin{aligned}
& \text { (00000001kc } \leqslant(11111110) \text { choice of shift } \\
& 1 \leqslant m+\text { as } 127 \\
& \hline-126 \leqslant m \leqslant 127
\end{aligned}
$$

$$
\begin{gathered}
c=(01110010) \\
c=m+\text { shift } \\
m=c-\text { shift }
\end{gathered}
$$

IEEE-754 Single Precision (32-bit)

$$
x=(-1)^{s} 1 . f \times 2^{m}
$$

Example: Represent the number $x=-67.125$ using IEEE SinglePrecision Standard

$$
67.125=(1000011.001)_{2}=(1.000011001)_{2} \times 2^{6}
$$

IEEE-754 Single Precision (32-bit)

$x=(-1)^{s} 1 . f \times 2^{m}=$| s | c | f |
| :--- | :--- | :--- |$c=m+127$

- Machine epsilon $\left(\epsilon_{m}\right)$: is defined as the distance (gap) between 1

$$
\epsilon_{m}=2^{-n}=2^{-23} \approx 1.2 \times 10^{-7}
$$

$$
\begin{aligned}
& 2^{\text {Smallest }} \stackrel{\text { positive normalized }}{ } \text { fP nun } 2^{-126} \approx 10^{-38}
\end{aligned}
$$

