Floating point representation

output quantity Method O(n^{er}) nxn t=cn^x T $2 = C 10^{3} = C (10)^{3}$ 0, 25 >405 10^{3} _

(Unsigned) Fixed-point representation

The numbers are stored with a fixed number of bits for the integer part and a fixed number of bits for the fractional part.

Suppose we have 8 bits to store a real number, where 5 bits store the integer part and 3 bits store the fractional part:

 $(10111.011.011)_{2^{4}2^{3}2^{2}2^{1}2^{1}2^{0}2^{-1}2^{-2}2^{-3}})_{2^{-3}}$ <u>Smallest number:</u> $(00000.001)_2 = (0.125)_{10}$ <u>Largest number:</u> $(11111, 111)_2 = (31.875)_{10}$

(Unsigned) Fixed-point representation

Suppose we have 64 bits to store a real number, where 32 bits store the integer part and 32 bits store the fractional part:

$$(a_{31} \dots a_2 a_1 a_0, b_1 b_2 b_3 \dots b_{32})_2 = \sum_{k=0}^{31} a_k 2^k + \sum_{k=1}^{32} b_k 2^{-k}$$

$$= a_{31} \times 2^{31} + a_{30} \times 2^{30} + \dots + a_0 \times 2^0 + b_1 \times 2^{-1} + b_2 \times 2^2 + \dots + b_{32} \times 2^{-32}$$

10

smallest:
$$00.00.00.01 = 32 \approx 10$$

 $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 2 \approx 10$
 $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 2 \approx 10$
 $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 2 \approx 10$
 $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 2 \approx 10$
 $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 2 \approx 10$
 $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 2 \approx 10$
 $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 2 \approx 10$
 $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 2 \approx 10$
 $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 2 \approx 10$
 $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 2 \approx 10$
 $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 2 \approx 10$
 $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 2 \approx 10$
 $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 2 \approx 10$
 $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 2 \approx 10$
 $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 2 \approx 10$
 $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} +$

(Unsigned) Fixed-point representation

Range: difference between the largest and smallest numbers possible. More bits for the integer part \rightarrow increase range

Precision: smallest possible difference between any two numbers More bits for the fractional part \rightarrow increase precision

$$(a_2a_1a_0, b_1b_2b_3)_2$$
 OR $(a_1a_0, b_1b_2b_3b_4)_2$

Wherever we put the binary point, there is a trade-off between the amount of range and precision. It can be hard to decide how much you need of each!

Scientific Notation

In scientific notation, a number can be expressed in the form

 $x = \pm r \times 10^m$

where *r* is a coefficient in the range $1 \le r < 10$ and *m* is the exponent.

1165.7 =

0.0004728 =

Floating-point numbers

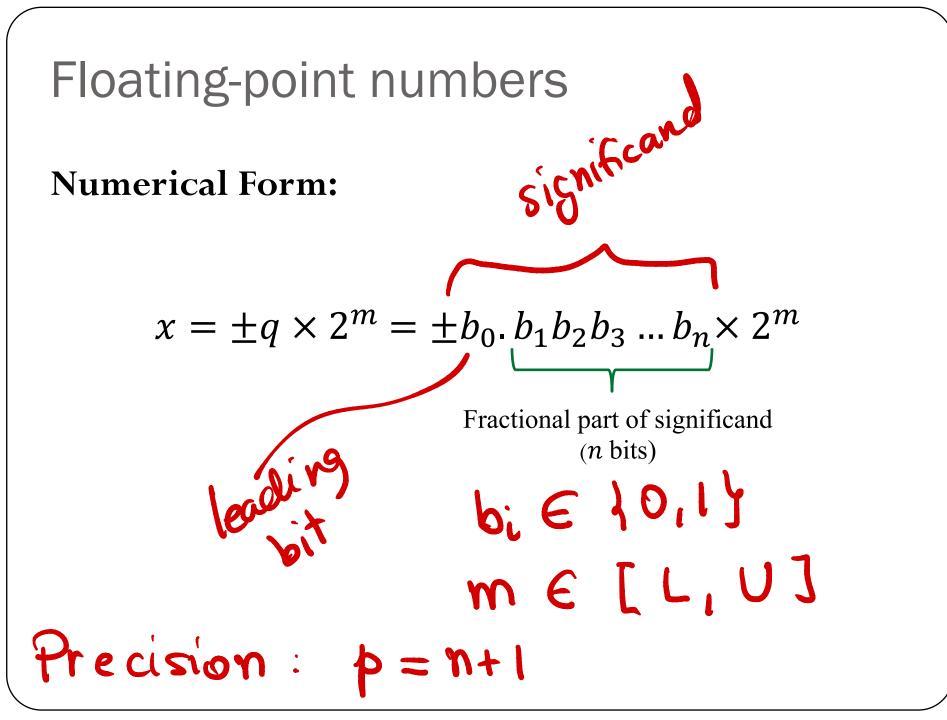
A floating-point number can represent numbers of different order of magnitude (very large and very small) with the same number of fixed bits.

In general, in the binary system, a floating number can be expressed as

$$x = \pm q \times 2^m$$

q is the significand, normally a fractional value in the range [1.0,2.0)

m is the exponent



Normalized floating-point numbers

Normalized floating point numbers are expressed as

$$x = \pm 1. b_1 b_2 b_3 \dots b_n \times 2^m = \pm 1. f \times 2^m$$

where f is the fractional part of the significand, m is the exponent and b. b. b. b2b3bq -> p=5 bits $b_i \in \{0,1\}.$ store 5 bits $|.b_1b_2b_3b_4b_7 \rightarrow p=6$ hidden bit representation -> gain

Converting floating points

Convert $(39.6875)_{10} = (100111.1011)_2$ into floating point representation

Iclicker question meet.ps/cs357

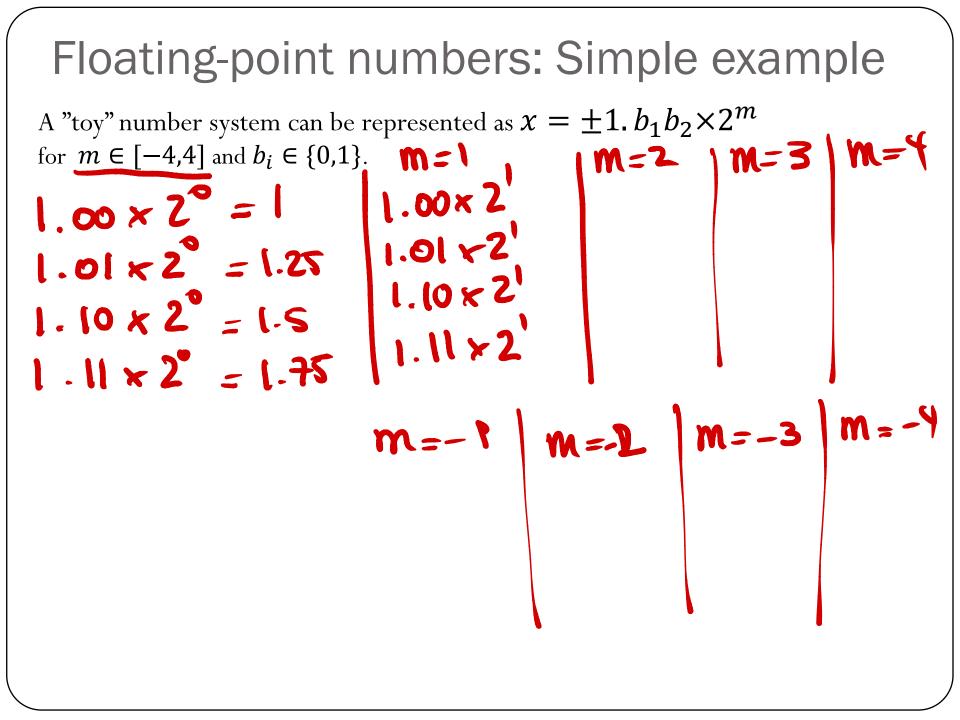
Determine the normalized floating point representation 1. $f \times 2^m$ of the decimal number x = 47.125 (f in binary representation and m in decimal) A) (1.01110001)₂ × 2⁵ (47.125)₁ = (10111.01)₂

 1.0111011×2^{5}

A) $(1.01110001)_2 \times 2^5$ B) $(1.01110001)_2 \times 2^4$ C) $(1.01111001)_2 \times 2^5$ D) $(1.01111001)_2 \times 2^4$

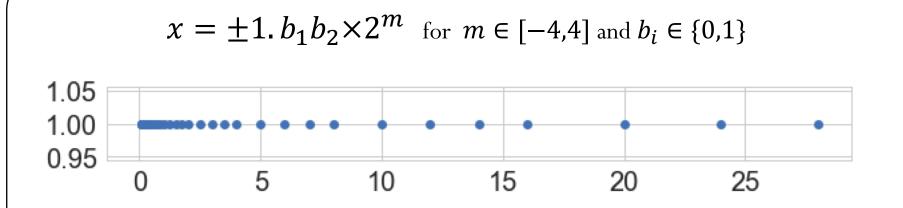
Normalized floating-point numbers $x = \pm q \times 2^{m} = \pm 1. b_{1}b_{2}b_{3} \dots b_{n} \times 2^{m} = \pm 1 f \times 2^{m}$ • Exponent range: m E [L, U] • Precision: p = n+1 n: # bits in f

- Smallest positive <u>normalized</u> FP number:
- $1.000 \dots 00 \times 2 = 2$ • Largest positive normalized FP number: $1.11 \dots 1 \times 2 = 2^{(4)}(1-2^{-P})$



Floating-point numbers: Simple example		
A "toy" number system can be represented as $x = \pm 1$. $b_1 b_2 \times 2^m$ for $m \in [-4,4]$ and $b_i \in \{0,1\}$.		
$(1.00)_2 \times 2^0 = 1$	$(1.00)_2 \times 2^1 = 2$	$(1.00)_2 \times 2^2 = 4.0$
$(1.01)_2 \times 2^0 = 1.25$	$(1.01)_2 \times 2^1 = 2.5$	$(1.01)_2 \times 2^2 = 5.0$
$(1.10)_2 \times 2^0 = 1.5$		$(1.10)_2 \times 2^2 = 6.0$
$(1.00)_2 \times 2^3 = 8.0$	$(1.11)_2 \times 2^1 = 3.5$ $(1.00)_2 \times 2^4 = 16.0$	$(1.11)_2 \times 2^2 = 7.0$ $(1.00)_2 \times 2^{-1} = 0.5$ $(1.01)_2 \times 2^{-1} = 0.5$
$(1.01)_2 \times 2^3 = 10.0$ $(1.10)_2 \times 2^3 = 12.0$	$(1.01)_2 \times 2^4 = 20.0$ $(1.10)_2 \times 2^4 = 24.0$	$(1.01)_2 \times 2^{-1} = 0.625$ $(1.10)_2 \times 2^{-1} = 0.75$
$(1.10)_2 \times 2^3 = 12.0$ $(1.11)_2 \times 2^3 = 14.0$	$(1.10)_2 \times 2^4 = 24.0$ $(1.11)_2 \times 2^4 = 28.0$	$(1.10)_2 \times 2^{-1} = 0.73$ $(1.11)_2 \times 2^{-1} = 0.875$
$(1.00)_2 \times 2^{-2} = 0.25$ $(1.01)_2 \times 2^{-2} = 0.3125$ $(1.10)_2 \times 2^{-2} = 0.375$ $(1.11)_2 \times 2^{-2} = 0.4375$	$(1.10)_2 \times 2^{-3} = 0.187$	$\begin{array}{l} (1.01)_2 \times 2^{-4} = 0.078125 \\ (1.10)_2 \times 2^{-4} = 0.09375 \end{array}$

Same steps are performed to obtain the negative numbers. For simplicity, we will show only the positive numbers in this example.



• Smallest normalized positive number:

 $2^{-4} = 2^{-4} = 0.0625$

 $2^{\text{off}}(1-2^{-P}) = 28$

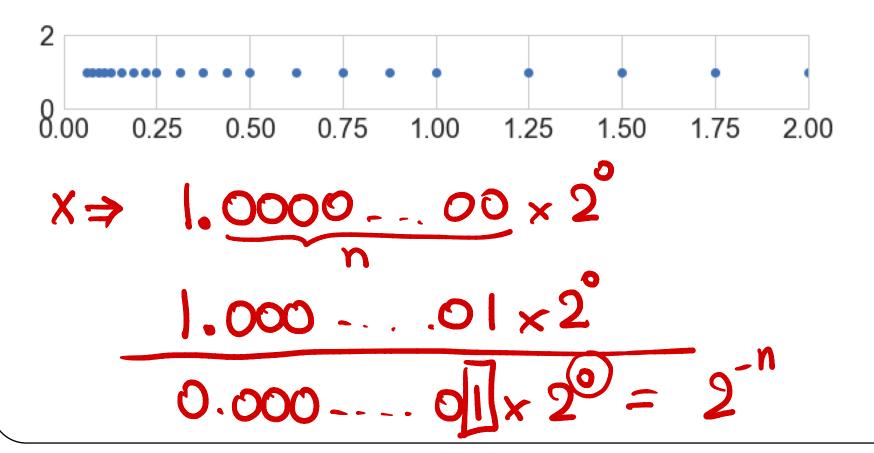
• Largest normalized positive number:

Machine epsilon

• Machine epsilon (ϵ_m) : is defined as the distance (gap) between 1 and the next largest floating point number.

 $E_m = 2$

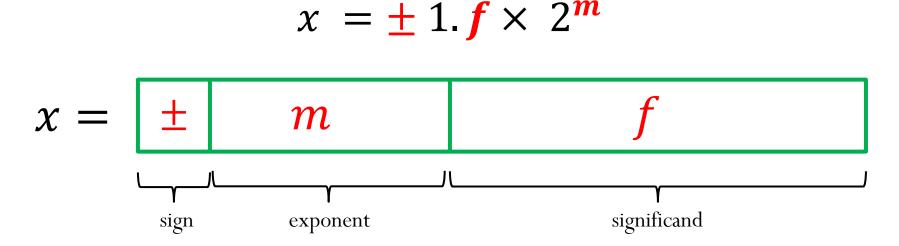
 $x = \pm 1. b_1 b_2 \times 2^m$ for $m \in [-4,4]$ and $b_i \in \{0,1\}$



Machine numbers: how floating point numbers are stored?

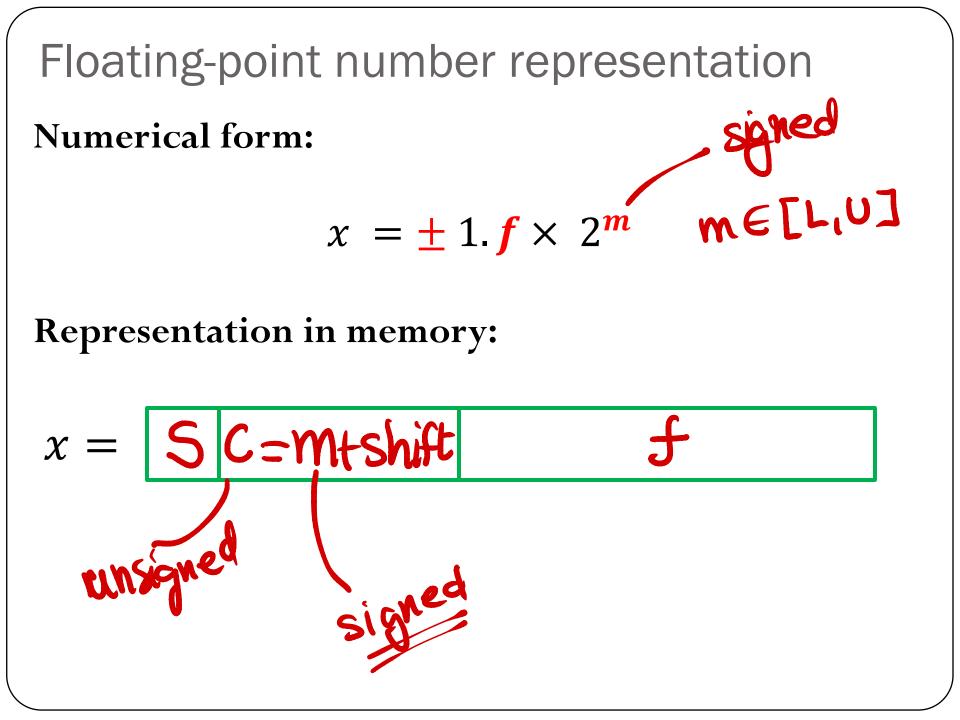
Floating-point number representation

What do we need to store when representing floating point numbers in a computer?



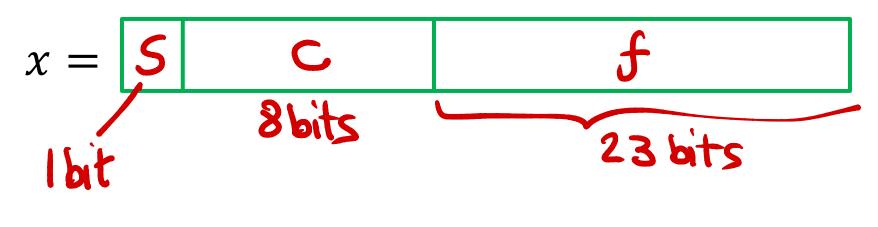
Initially, different floating-point representations were used in computers, generating inconsistent program behavior across different machines.

Around 1980s, computer manufacturers started adopting a standard representation for floating-point number: IEEE (Institute of Electrical and Electronics Engineers) 754 Standard.

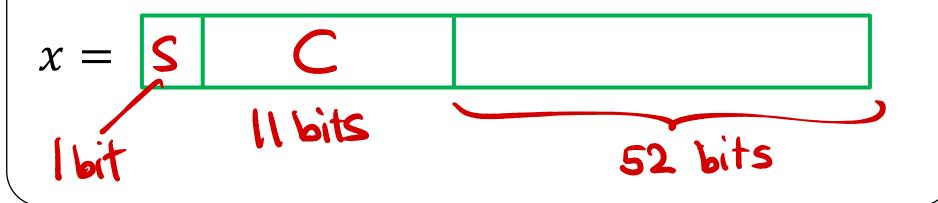


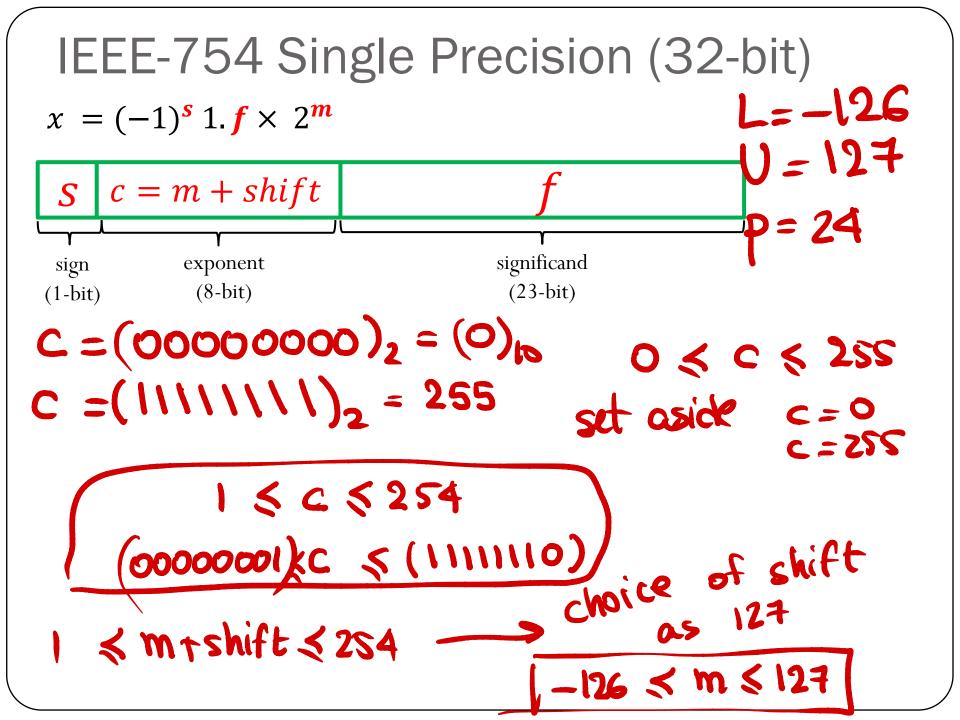
Precisions:

IEEE-754 Single precision (32 bits):

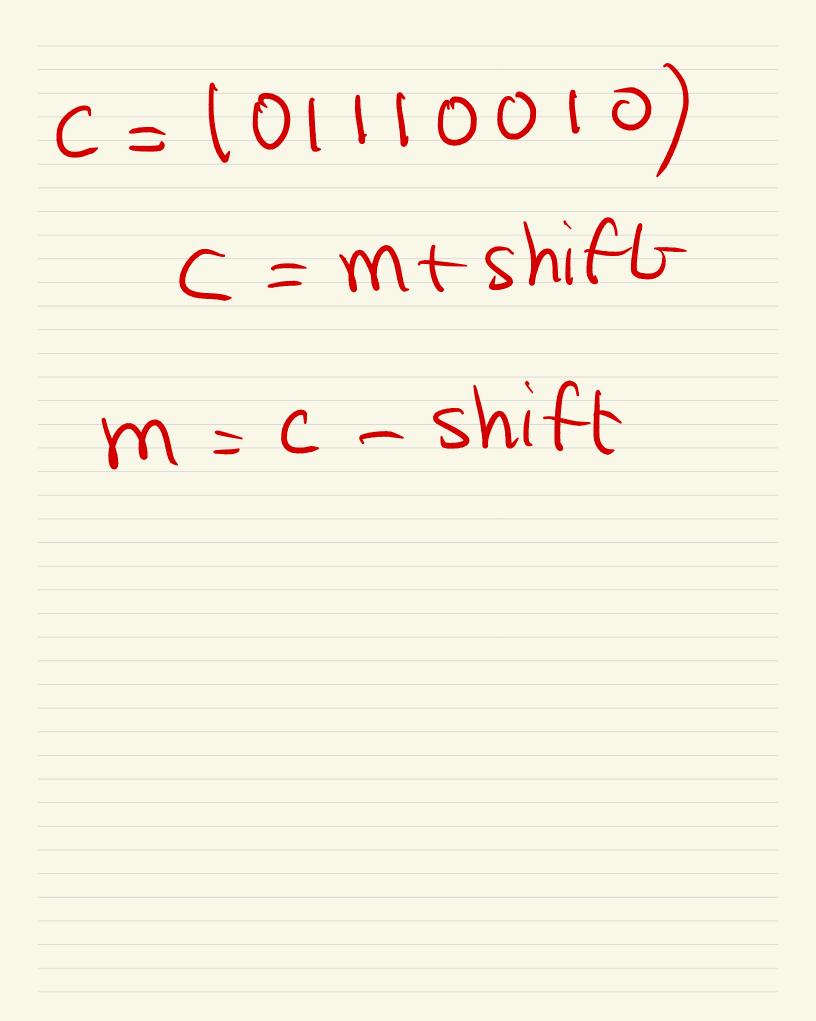


IEEE-754 Double precision (64 bits):





 $1 \leq C \leq 254$ $1 \leq \text{mtshift} \leq 254$ shift = 127] choice! 1-127 ≤ m ≤ 254-127 -126 < m < 127



IEEE-754 Single Precision (32-bit)

 $x = (-1)^{\mathbf{s}} 1.\mathbf{f} \times 2^{\mathbf{m}}$

Example: Represent the number x = -67.125 using IEEE Single-Precision Standard

 $67.125 = (1000011.001)_2 = (1.000011001)_2 \times 2^6$

IEEE-754 Single Precision (32-bit) $x = (-1)^{s} 1 f \times 2^{m} = s c f c = m + 127$

- Machine epsilon (ϵ_m) : is defined as the distance (gap) between 1 and the next largest floating point number.
 - $E_{\rm m} = 2 = 2 \approx 1.2 \times 10^{-7}$

- Smallest positive normalized FP number:
- $2 \longrightarrow 2^{-126} \approx 10^{-38}$ Largest positive normalized FP number: 38 $2^{0+1} \left(1-2^{-7}\right) \Rightarrow 2^{128} \left(1-2^{-24}\right) \approx 10$

