
Floating point representation

-¥f¥,- III:*
n→ t t = and

i: ¥ l&:

(Unsigned) Fixed-point representation
The numbers are stored with a fixed number of bits for the integer part
and a fixed number of bits for the fractional part.

Suppose we have 8 bits to store a real number, where 5 bits store the
integer part and 3 bits store the fractional part:

2"2#2$2%2& 2'%2'$2'#
1 0 1 1 1.0 1 1 $

Smallest number:

Largest number:

(00000 . 00 I 72 =@. 1251,0
(l l l l l . l l l L = (31-875),

(Unsigned) Fixed-point representation
Suppose we have 64 bits to store a real number, where 32 bits store the
integer part and 32 bits store the fractional part:

!"# …!%!#!&. (#(%(" …("% % = *
+,&

"#
!+ 2+ +*

+,#

"%
(+ 2/+

= !"#× 2"#+!"&× 2"&+⋯+ !&× 2&+(#× 2/#+(%× 2%+⋯+ ("%× 2/"%

0 ∞

- I0

smallest i 00 - - .
00 . ¥,Oy -

OL
z
-322 a 10

largest .. l l l - - . . l l . l l l . . . l l E 109
ka wg
-10 109

10

(Unsigned) Fixed-point representation
Range: difference between the largest and smallest numbers possible.

More bits for the integer part ⟶ increase range

Precision: smallest possible difference between any two numbers
More bits for the fractional part ⟶ increase precision

Wherever we put the binary point, there is a trade-off between the
amount of range and precision. It can be hard to decide how much
you need of each!

"#"$"%. '$'#'(# "$"%. '$'#'(') #OR

Scientific Notation

In scientific notation, a number can be expressed in the form

! = ± $ × 10(

where $ is a coefficient in the range 1 ≤ $ < 10 and + is the exponent.

1165.7 =

0.0004728 =

Floating-point numbers
A floating-point number can represent numbers of different order of
magnitude (very large and very small) with the same number of fixed bits.

In general, in the binary system, a floating number can be expressed as

! = ± $ × 2'
$ is the significand, normally a fractional value in the range [1.0,2.0)

. is the exponent

Floating-point numbers

Numerical Form:

! = ±$ × 2' = ±(). (+(,(- …(/× 2'

Fractional part of significand
(0 bits)

significand

÷
bit bi E lo , I }

ME [L , U]
Precision : pent I

Normalized floating-point numbers
Normalized floating point numbers are expressed as

! = ± 1. &'&(&) …&+× 2. = ± 1. / × 2.

where / is the fractional part of the significand, 0 is the exponent and
&1 ∈ 0,1 .

store 5 bits
/ bo . blbzbsb4 → p=5 bits

\ I . b.bebaby be → p-6

hidden bit representation →
"

gain
"

I bit of

precision

Converting floating points

Convert (39.6875)*+ = 100111.1011 / into floating point
representation

Iclicker question
Determine the normalized floating point representation
1. # × 2& of the decimal number ' = 47.125 (# in binary
representation and & in decimal)

A) 1.01110001 / × 20
B) 1.01110001 / × 22
C) 1.01111001 / × 20
D) 1.01111001 / × 22

meet. ps Lcs357

(47. 1251,0=401411.011/2
5

l . O l l l l O l l x
2

• Exponent range:

• Precision:

• Smallest positive normalized FP number:

• Largest positive normalized FP number:

Normalized floating-point numbers

! = ± $ × 2'= ± 1. *+*,*- …*/× 2' = ± 1. 0 × 2'
• r

D
ME [L , U]

P - htt h:# bits in f

-

L
1. 000 OO x 2h = 2
-n

1.lll__x I = It
'ft -2-P)

Floating-point numbers: Simple example
A ”toy” number system can be represented as ! = ±1. &'&(×2+
for , ∈ [−4,4] and &3 ∈ {0,1}.

i÷÷÷÷÷÷ Eff
m-- 9

µm
-12

/
m=-3

)
m -- -4

Floating-point numbers: Simple example
A ”toy” number system can be represented as ! = ±1. &'&(×2+
for , ∈ [−4,4] and &3 ∈ {0,1}.
1.00 (×27 = 1
1.01 (×27 = 1.25
1.10 (×27 = 1.5
1.11 (×27 = 1.75

1.00 (×2:' = 0.5
1.01 (×2:' = 0.625
1.10 (×2:' = 0.75
1.11 (×2:' = 0.875

1.00 (×2' = 2
1.01 (×2' = 2.5
1.10 (×2' = 3.0
1.11 (×2' = 3.5

1.00 (×2(= 4.0
1.01 (×2(= 5.0
1.10 (×2(= 6.0
1.11 (×2(= 7.0

1.00 (×2> = 8.0
1.01 (×2> = 10.0
1.10 (×2> = 12.0
1.11 (×2> = 14.0

1.00 (×2? = 16.0
1.01 (×2? = 20.0
1.10 (×2? = 24.0
1.11 (×2? = 28.0

1.00 (×2:(= 0.25
1.01 (×2:(= 0.3125
1.10 (×2:(= 0.375
1.11 (×2:(= 0.4375

1.00 (×2:> = 0.125
1.01 (×2:> = 0.15625
1.10 (×2:> = 0.1875
1.11 (×2:> = 0.21875

1.00 (×2:? = 0.0625
1.01 (×2:? = 0.078125
1.10 (×2:? = 0.09375
1.11 (×2:? = 0.109375

Same steps are performed to obtain the negative numbers. For simplicity, we
will show only the positive numbers in this example.

D (
It'll -2-17=254-2-3)

⇒ ri
-

! = ±1. &'&(×2+ for , ∈ [−4,4] and &3 ∈ {0,1}

• Smallest normalized positive number:

• Largest normalized positive number:

2h = 2-4=0.0625

It' (I - 2-t) = 28

! = ±1. &'&(×2+ for , ∈ [−4,4] and &3 ∈ {0,1}

Machine epsilon
• Machine epsilon (7+): is defined as the distance (gap) between 1 and the

next largest floating point number.

Em .-I
" 1/2-2

X⇒ 1.0000 . . . 00
°

-
x2

1. 000 -
.
.

01×20
-

0.000 - - - - 0*200--5
"

Machine numbers: how floating point
numbers are stored?

Floating-point number representation
What do we need to store when representing floating point
numbers in a computer?

! = ± 1. & × 2)

! = ± * +
sign exponent significand

Initially, different floating-point representations were used in computers,
generating inconsistent program behavior across different machines.

Around 1980s, computer manufacturers started adopting a standard
representation for floating-point number: IEEE (Institute of Electrical and
Electronics Engineers) 754 Standard.

Floating-point number representation
Numerical form:

! = ± 1. & × 2)

Representation in memory:

! =

-signed
ME[LiU]

S C --Mtshift f

unsigned (
signed

Precisions:

IEEE-754 Single precision (32 bits):

IEEE-754 Double precision (64 bits):

! =

! =

S a f
I 8bits -

Ibit 23 bits

S C
/ Ilbits -

Ibit 52 bits

IEEE-754 Single Precision (32-bit)
! = (−1)' 1.) × 2,

sign
(1-bit)

exponent
(8-bit)

significand
(23-bit)

- . = / + -ℎ234 3
↳-126
0=127

p - 24

C = 000000072=0110 Of C f 255
C -41111111112=255 set aside c-- O

C --255

I f e f 2540¥fl%oicea
,
offfhift

/ gmtshifts 254
f-lzgfmf.be#

I f C f 254
M→

I f Mt shift E 254| fshift=l27J choice !I - 127 f M S 254- 127

-126 S ME 127 23

praise
-8

C = 101110010)
C -- Mt shift

M - c - shift

IEEE-754 Single Precision (32-bit)

! = (−1)' 1.) × 2,

67.125 = 1000011.001 1 = 1.000011001 1×22

Example: Represent the number ! = −67.125 using IEEE Single-
Precision Standard

• Machine epsilon (!"): is defined as the distance (gap) between 1
and the next largest floating point number.

= (−1)) 1. + × 2. = / = 0 + 127

IEEE-754 Single Precision (32-bit)
) 3 +

• Smallest positive normalized FP number:

• Largest positive normalized FP number:

Em = In = 2-
"

w 1.2×10-7

2
"

→ 2-126 I 10-38

It' fl - 2-P) ⇒ 212811 - 2-24) 1038

Ah

=
A -OFL - UFL UFL OFL A

-

10£ -

1£38 to-32 11038

