
Floating point representation

(Unsigned) Fixed-point representation
The numbers are stored with a fixed number of bits for the integer part
and a fixed number of bits for the fractional part.

Suppose we have 8 bits to store a real number, where 5 bits store the
integer part and 3 bits store the fractional part:

2"2#2$2%2& 2'%2'$2'#
1 0 1 1 1.0 1 1 $

Smallest number: 00000.001 $ = 0.125

Largest number: 11111.111 $ = 31.875

(Unsigned) Fixed-point representation
Suppose we have 64 bits to store a real number, where 32 bits store the
integer part and 32 bits store the fractional part:

Smallest number:
!"= 0 ∀& and '(, '*, … , ',(= 0 and ',* = 1 → 20,*≈ 100(2

Largest number:
!"= 1 ∀& and '"= 1 ∀& → 2,(+⋯+ 22+ 20(+⋯+ 20,*≈ 105

!,(…!*!(!2. '('*', …',* * = 7
892

,(
!8 28 +7

89(

,*
'8 208

= !,(× 2,(+!,2× 2,2+⋯+ !2× 22+'(× 20(+'*× 2*+⋯+ ',*× 20,*

(Unsigned) Fixed-point representation
Suppose we have 64 bits to store a real number, where 32 bits store the
integer part and 32 bits store the fractional part:

Smallest number →≈ 10%&'
Largest number →≈ 10(

)*& …),)&)'. .&.,.* ….*, , = 0
12'

*&
)1 21 +0

12&

*,
.1 2%1

0 ∞

(Unsigned) Fixed-point representation
Range: difference between the largest and smallest numbers possible.

More bits for the integer part ⟶ increase range

Precision: smallest possible difference between any two numbers
More bits for the fractional part ⟶ increase precision

Wherever we put the binary point, there is a trade-off between the
amount of range and precision. It can be hard to decide how much
you need of each!

Fix: Let the binary point “float”

"#"$"%. '$'#'(# "$"%. '$'#'(') #OR

Floating-point numbers
A floating-point number can represent numbers of different order of
magnitude (very large and very small) with the same number of fixed
digits.

In general, in the binary system, a floating number can be expressed as

! = ± $ × 2'
$ is the significand, normally a fractional value in the range [1.0,2.0)

. is the exponent

Floating-point numbers

Numerical Form:

! = ±$ × 2' = ±(). (+(,(- …(/× 2'

(0 ∈ 0,1
Exponent range: 5 ∈ 6,7
Precision: p = 9 + 1

Fractional part of significand
(9 digits)

“Floating” the binary point

10111 # = 1×16 + 0×8 + 1×4 + 1×2 + 1×1 = 23 ,-

1011.1 # = 1×8 + 0×4 + 1×2 + 1×1 + 1×12 = 11.5 ,-

Move “binary point” to the left by one bit position: Divide the decimal
number by 2
Move “binary point” to the right by one bit position: Multiply the decimal
number by 2

= 1011.1 #× 2,= 23 ,-

101.11 # = 1×4 + 0×2 + 1×1 + 1×12 + 1×
1
4 = 5.75 ,-

= 1011.1 #× 21,= 5.75 ,-

Converting floating points

Convert (39.6875)*+ = 100111.1011 / into floating point
representation

(39.6875)*+ = 100111.1011 / = 1.001111011 / × 22

Normalized floating-point numbers
Normalized floating point numbers are expressed as

! = ± 1. &'&(&) …&+× 2. = ± 1. / × 2.

where / is the fractional part of the significand, 0 is the exponent and
&1 ∈ 0,1 .

Hidden bit representation:

The first bit to the left of the binary point &5 = 1 does not need to be
stored, since its value is fixed.
This representation ”adds” 1-bit of precision (we will show some exceptions
later, including the representation of number zero).

Iclicker question
Determine the normalized floating point representation
1. # × 2& of the decimal number ' = 47.125 (# in binary
representation and & in decimal)

A) 1.01110001 / × 20
B) 1.01110001 / × 22
C) 1.01111001 / × 20
D) 1.01111001 / × 22

• Exponent range: !, #

• Precision: p = & + 1

• Smallest positive normalized FP number:

UFL = 2*

• Largest positive normalized FP number:

OFL = 2+,-(1 − 201)

Normalized floating-point numbers

3 = ± 5 × 27= ± 1. 9-9:9; …9=× 27 = ± 1. > × 27

Normalized floating point number scale

0
+∞−∞

Floating-point numbers: Simple example
A ”toy” number system can be represented as ! = ±1. &'&(×2+
for , ∈ [−4,4] and &3 ∈ {0,1}.
1.00 (×27 = 1
1.01 (×27 = 1.25
1.10 (×27 = 1.5
1.11 (×27 = 1.75

1.00 (×2:' = 0.5
1.01 (×2:' = 0.625
1.10 (×2:' = 0.75
1.11 (×2:' = 0.875

1.00 (×2' = 2
1.01 (×2' = 2.5
1.10 (×2' = 3.0
1.11 (×2' = 3.5

1.00 (×2(= 4.0
1.01 (×2(= 5.0
1.10 (×2(= 6.0
1.11 (×2(= 7.0

1.00 (×2> = 8.0
1.01 (×2> = 10.0
1.10 (×2> = 12.0
1.11 (×2> = 14.0

1.00 (×2? = 16.0
1.01 (×2? = 20.0
1.10 (×2? = 24.0
1.11 (×2? = 28.0

1.00 (×2:(= 0.25
1.01 (×2:(= 0.3125
1.10 (×2:(= 0.375
1.11 (×2:(= 0.4375

1.00 (×2:> = 0.125
1.01 (×2:> = 0.15625
1.10 (×2:> = 0.1875
1.11 (×2:> = 0.21875

1.00 (×2:? = 0.0625
1.01 (×2:? = 0.078125
1.10 (×2:? = 0.09375
1.11 (×2:? = 0.109375

Same steps are performed to obtain the negative numbers. For simplicity, we
will show only the positive numbers in this example.

! = ±1. &'&(×2+ for , ∈ [−4,4] and &3 ∈ {0,1}

• Smallest normalized positive number:
1.00 (×278 = 0.0625

• Largest normalized positive number:
1.11 (×28 = 28.0

• Any number ! closer to zero than 0.0625 would UNDERFLOW to
zero.

• Any number ! outside the range −28.0 and +28.0 would
OVERFLOW to infinity.

1.01 $ ×2' = 1.25

* = ±1. ,-,$×2. for / ∈ [−4,4] and ,6 ∈ {0,1}

Machine epsilon
• Machine epsilon (9.): is defined as the distance (gap) between 1 and the

next larger floating point number.

1.00 $ ×2' = 1

:; = 0.01 $ ×2' = <. =>

Machine numbers: how floating point
numbers are stored?

Floating-point number representation
What do we need to store when representing floating point
numbers in a computer?

! = ± 1. & × 2)

! = ± * +
sign exponent significand

Initially, different floating-point representations were used in computers,
generating inconsistent program behavior across different machines.

Around 1980s, computer manufacturers started adopting a standard
representation for floating-point number: IEEE (Institute of Electrical and
Electronics Engineers) 754 Standard.

Floating-point number representation
Numerical form:

! = ± 1. & × 2)

Representation in memory:

! = * + ,
sign exponent significand

! = (−1)* 1. & × 201*23&4) = 0 − *23&4

Precisions:

IEEE-754 Single precision (32 bits):

IEEE-754 Double precision (64 bits):

sign
(1-bit)

exponent
(8-bit)

significand
(23-bit)

! " = $ + 127)

sign
(1-bit)

exponent
(11-bit)

significand
(52-bit)

! " = $ + 1023)

, =

, =

Finite representation: not all
numbers can be represented

exactly!

Special Values:

! 000…000 0000……0000$ =
1) Zero:

2) Infinity: +∞ (! = 0) and −∞ ! = 1

! 111…111 0000……0000$ =
3) NaN: (results from operations with undefined results)

! 111…111 +,-.ℎ0,1 ≠ 00…00$ =
Note that the exponent 3 = 000…000 and 3 = 111…111 are reserved
for these special cases, which limits the exponent range for the other numbers.

$ = (−1)5 1. 7 × 2: = 5 ; 7

IEEE-754 Single Precision (32-bit)
! = (−1)' 1.) × 2,

sign
(1-bit)

exponent
(8-bit)

significand
(23-bit)

- . = / + 127 2

- = 0: positive sign, - = 1: negative sign

Reserved exponent number for special cases:
. = 11111111 5 = 255 and . = 00000000 5 = 0

Therefore 0 < c < 255
The largest exponent is U = 254 − 127 = 127
The smallest exponent is L = 1 − 127 = −126

IEEE-754 Single Precision (32-bit)

! = (−1)' 1.) × 2,

67.125 = 1000011.001 1 = 1.000011001 1×22

00001100100000…000

23-bit

1 10000101

Example: Represent the number ! = −67.125 using IEEE Single-
Precision Standard

4 = 6 + 127 = 133 = 10000101 1

8-bit1-bit

• Machine epsilon (!"): is defined as the distance (gap) between 1
and the next larger floating point number.

= (−1)) 1. + × 2. = / = 0 + 127

IEEE-754 Single Precision (32-bit)
) 3 +

• Smallest positive normalized FP number:
UFL = 24 = 25678 ≈ 1.2 ×105;<

• Largest positive normalized FP number:
OFL = 2=>6(1 − 25?) = 267<(1 − 257@) ≈ 3.4 ×10;<

C. = D5DE ≈ 1.2 × 105F

000000000000000000000000111111101 6G =

000000000000000000000010111111101 6G + !" =

IEEE-754 Double Precision (64-bit)
! = (−1)' 1.) × 2,

sign
(1-bit)

exponent
(11-bit)

significand
(52-bit)

- . = / + 1023 3

- = 0: positive sign, - = 1: negative sign

Reserved exponent number for special cases:
. = 11111111111 5 = 2047 and . = 00000000000 5 = 0

Therefore 0 < c < 2047
The largest exponent is U = 2046 − 1023 = 1023
The smallest exponent is L = 1 − 1023 = −1022

• Machine epsilon (!"): is defined as the distance (gap) between 1
and the next larger floating point number.

= (−1)) 1. + × 2. = / = 0 + 1023

IEEE-754 Double Precision (64-bit)
) 4 +

• Smallest positive normalized FP number:
UFL = 25 = 267899 ≈ 2.2 ×106;8<

• Largest positive normalized FP number:
OFL = 2=>7(1 − 26?) = 2789@(1 − 26A;) ≈ 1.8 ×10;8<

C. = D6ED ≈ 2.2 × 1067F

000000000000…0000000000111…11101 78 =

000000000000…00000000101 78 + !" = 0111…111

Normalized floating point number scale
(double precision)

0
+∞−∞

Subnormal (or denormalized) numbers
• Noticeable gap around zero, present in any floating system, due to

normalization
ü The smallest possible significand is 1.00
ü The smallest possible exponent is $

• Relax the requirement of normalization, and allow the leading digit to be zero,
only when the exponent is at its minimum (% = $)

• Computations with subnormal numbers are often slow.

Representation in memory (another special case):

Numerical value:

' (= 000…000 *+ =

+ = (−1)/ 0. 0 × 23

Note that this is a special case, and
the exponent 4 is not evaluated as
4 = 5 − /6708 = −/6708.
Instead, the exponent is set to the
lower bound, 4 = 9

Subnormal (or denormalized) numbers

IEEE-754 Single precision (32 bits):

IEEE-754 Double precision (64 bits):

! = 00000000 $ = 0
Exponent set to % = −126
Smallest positive subnormal FP number: 2*$+ × 2*-$. ≈ 1.4 ×10*23

Allows for more gradual underflow to zero (however subnormal numbers
don’t have as many accurate digits as normalized numbers)

! = 00000000000 $ = 0
Exponent set to % = −1022
Smallest positive subnormal FP number: 2*3$ × 2*-4$$ ≈ 4.9 ×10*+$2

IEEE-754 Double Precision

Stored binary
exponent (")

Significand
fraction ($)

value

00000000 0000…0000 zero
00000000 %&' $ ≠ 0 (−1), 0. . × 21234
00000001 %&' $ (−1), 1. . × 21234

11111110 %&' $ (−1), 1. . × 2235
11111111 %&' $ ≠ 0 NaN
11111111 0000…0000 infinity

6 = (−1), 1. . × 28 = 9 = " − 127, ; .

Summary for Single Precision

⋮ ⋮ ⋮

Example
Determine the single-precision representation of the decimal number
! = 37.625

)*)+),)))-).)/-)/))/,

32 16 8 4 2 1 0.5 0.25 0.125

1 0 0 1 0 1 1 0 1

37.625 5.625 5.625 5.625 1.625 1.625 0.625 0.125 0.125 0

• Convert the decimal number to binary: 37.625 01 = 100101.101 4

• Convert the binary number to the normalized FP representation 1. 5 × 27

100101.101 4 = 1.00101101 4×28

9 = 00101101…00 ; = 5

< = ; + 127 = 132 = 10000100 4

> = 0

0 10000100 00101101000000000000000

What is the equivalent decimal
number?
0 00000000 00000000000000000000000

1 11111111 00000000000000000000000

0 11111111 11111111110000111111111

0 00000000 11110000000000000000000

0 01111111 00000000000000000000000

Iclicker question
A number system can be represented as ! = ±1. &'&(&)×2,
for - ∈ [−5,5] and &4 ∈ {0,1}.

1) What is the smallest positive normalized FP number:
a) 0.0625 b) 0.09375 c) 0.03125 d) 0.046875 e) 0.125

2) What is the largest positive normalized FP number:
a) 28 b) 60 c) 56 d) 32

3) How many additional numbers (positive and negative) can be
represented when using subnormal representation?
a) 7 b) 14 c) 3 d) 6 e) 16

4) What is the smallest positive subnormal number?
a) 0.00390625 b) 0.00195313 c) 0.03125 d) 0.0136719

5) Determine machine epsilon
a) 0.0625 b) 0.00390625 c) 0.0117188 d) 0.125

A number system can be represented as ! = ±1. &'&(&)&*×2-
for . ∈ [−6,6] and &5 ∈ {0,1}.

1) Let’s say you want to represent the decimal number 19.625 using the
binary number system above. Can you represent this number exactly?

2) What is the range of integer numbers that you can represent exactly using
this binary system?

Iclicker question
Determine the decimal number corresponding to the
following single-precision machine number:

1 10011001 00000000000000000000001

A) 67,108,872

B) −67,108,872

C) 67,108,864

D) −67,108,864

Iclicker question
Determine the double-precision machine representation
of the decimal number ! = −37.625

1 10000100000 00101101000000…0

1 10000000100 00101101000000…0

0 10000100000 00101101000000…0

0 10000000100 00101101000000…0

A)

B)

C)

D)

(52-bit)

