
Nonlinear Equations

How can we
solve these
equations?
• Spring force:
𝐹 = 𝑘 𝑥

What is the displacement when
𝐹 = 2N?

• Drag force:
𝐹 = 0.5 𝐶! 𝜌 𝐴 𝑣" = 𝜇! 𝑣"

What is the velocity when
𝐹 = 20N?

𝑘 = 40 𝑁/𝑚

𝜇! = 0.5 𝑁𝑠/𝑚

• Spring force:
𝑓 𝑥 = 𝑘 𝑥 − 𝐹 = 0

• Drag force:
𝑓 𝑣 = 𝜇! 𝑣"−𝐹 = 0

𝜇! = 0.5 𝑁𝑠/𝑚

Nonlinear Equations in 1D

Goal: Solve 𝑓 𝑥 = 0 for 𝑓:ℛ → ℛ

Find the root (zero) of the
nonlinear equation 𝑓 𝑣

Often called Root Finding

Bisection method

Algorithm:
1.Take two points, 𝑎 and 𝑏, on each side of the root such that 𝑓(𝑎) and 𝑓(𝑏) have
opposite signs.

2.Calculate the midpoint 𝑚 = !"#
$

3. Evaluate 𝑓(𝑚) and use 𝑚 to replace either 𝑎 or 𝑏, keeping the signs of the
endpoints opposite.

Convergence
• The bisection method does not estimate 𝑥., the approximation of the

desired root 𝑥. It instead finds an interval smaller than a given
tolerance that contains the root.

• The length of the interval at iteration 𝑘 is /01
"!

. We can define this
interval as the error at iteration 𝑘

lim
"→$

|𝑒"%&|
|𝑒"|

= lim
"→$

|𝑒"%&|
|𝑒"|

= lim
"→$

𝑏 − 𝑎
2"%&
𝑏 − 𝑎
2"

= 0.5

• Linear convergence

Convergence
An iterative method converges with rate 𝑟 if:

lim
.→<

||𝑒.=>||
||𝑒.||?

= 𝐶, 0 < 𝐶 < ∞

𝑟 = 1: linear convergence
𝑟 > 1: superlinear convergence
𝑟 = 2: quadratic convergence

Linear convergence gains a constant number of accurate digits each step
(and 𝐶 < 1 matters!

Quadratic convergence doubles the number of accurate digits in each step
(however it only starts making sense once ||𝑒.|| is small (and 𝐶 does not
matter much)

Example:
Consider the nonlinear equation

𝑓 𝑥 = 0.5𝑥" − 2

and solving f x = 0 using the Bisection Method. For each of the initial
intervals below, how many iterations are required to ensure the root is
accurate within 20@?

A) [−10,−1.8]

B) [−3,−2.1]

C) [−4, 1.9]

Bisection Method - summary

q The function must be continuous with a root in the interval 𝑎, 𝑏

q Requires only one function evaluations for each iteration!
o The first iteration requires two function evaluations.

q Given the initial internal [𝑎, 𝑏], the length of the interval after 𝑘
iterations is /01"!

q Has linear convergence

Newton’s method
• Recall we want to solve 𝑓 𝑥 = 0 for 𝑓:ℛ → ℛ

• The Taylor expansion:

𝑓 𝑥. + ℎ ≈ 𝑓 𝑥. + 𝑓′ 𝑥. ℎ

gives a linear approximation for the nonlinear function 𝑓 near 𝑥..

𝑓 𝑥. + ℎ = 0 → ℎ = −𝑓 𝑥. /𝑓′ 𝑥.

• Algorithm:

𝑥.=> = 𝑥. − 𝑓 𝑥. /𝑓′ 𝑥.

𝑥A = 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑔𝑢𝑒𝑠𝑠

Newton’s method

Equation of the tangent line:

𝑓′(𝑥.) =
𝑓 𝑥. − 0
𝑥. − 𝑥.=>

𝑥"%& 𝑥"

Iclicker question
Consider solving the nonlinear equation

5 = 2.0 𝑒C + 𝑥"

What is the result of applying one iteration of Newton’s method for solving
nonlinear equations with initial starting guess 𝑥A = 0, i.e. what is 𝑥>?

A) −2
B) 0.75
C) −1.5
D) 1.5
E) 3.0

Newton’s Method - summary

q Must be started with initial guess close enough to root (convergence is
only local). Otherwise it may not converge at all.

q Requires function and first derivative evaluation at each iteration (think
about two function evaluations)

q What can we do when the derivative evaluation is too costly (or
difficult to evaluate)?

q Typically has quadratic convergence

lim
.→<

||𝑒.=>||
||𝑒.||"

= 𝐶, 0 < 𝐶 < ∞

Secant method
Also derived from Taylor expansion, but instead of using 𝑓′ 𝑥. , it
approximates the tangent with the secant line:

Secant line:

𝑓′(𝑥.) ≈
𝑓 𝑥. − 𝑓 𝑥.0>

𝑥. − 𝑥.0>

𝑥"%& 𝑥"'&𝑥"

𝑥.=> = 𝑥. − 𝑓 𝑥. /𝑓′ 𝑥.

• Algorithm:

𝑥!, 𝑥" = 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑔𝑢𝑒𝑠𝑠𝑒𝑠

𝑓# 𝑥$ =
𝑓 𝑥$ − 𝑓 𝑥$%"

𝑥$ − 𝑥$%"
𝑥$&" = 𝑥$ − 𝑓 𝑥$ /𝑓′ 𝑥$

Secant Method - summary

q Still local convergence

q Requires only one function evaluation per iteration (only the first
iteration requires two function evaluations)

q Needs two starting guesses

q Has slower convergence than Newton’s Method – superlinear
convergence

lim
.→<

||𝑒.=>||
||𝑒.||?

= 𝐶, 1 < 𝑟 < 2

1D methods for root finding:
Method Update Convergence Cost

Bisection Check signs of 𝑓 𝑎 and
𝑓 𝑏

𝑡! =
|𝑏 − 𝑎|
2!

Linear (𝑟 = 1 and c = 0.5) One function evaluation per
iteration, no need to
compute derivatives

Secant 𝑥!"# = 𝑥! + ℎ

ℎ = −𝑓 𝑥! /𝑑𝑓𝑎

𝑑𝑓𝑎 =
𝑓 𝑥! − 𝑓 𝑥!$#

𝑥! − 𝑥!$#

Superlinear 𝑟 = 1.618 ,
local convergence properties,
convergence depends on the
initial guess

One function evaluation per
iteration (two evaluations for
the initial guesses only), no
need to compute derivatives

Newton 𝑥!"# = 𝑥! + ℎ

ℎ = −𝑓 𝑥! /𝑓′ 𝑥!

Quadratic 𝑟 = 2 , local
convergence properties,
convergence depends on the
initial guess

Two function evaluations per
iteration, requires first order
derivatives

Nonlinear system of equations

https://www.youtube.com/watch?v=NRgNDlVtmz0 (Robotic arm 1)
https://www.youtube.com/watch?v=9DqRkLQ5Sv8 (Robotic arm 2)
https://www.youtube.com/watch?v=DZ_ocmY8xEI (Blender)

Robotic arms

https://www.youtube.com/watch%3Fv=NRgNDlVtmz0
https://www.youtube.com/watch%3Fv=9DqRkLQ5Sv8
https://www.youtube.com/watch%3Fv=DZ_ocmY8xEI

Nonlinear system of equations
Goal: Solve 𝒇 𝒙 = 𝟎 for 𝒇:ℛD → ℛD

In other words, 𝒇 𝒙 is a vector-valued function

𝒇 𝒙 =
𝑓> 𝒙
⋮

𝑓D 𝒙
=

𝑓> 𝑥>, 𝑥", 𝑥E, … , 𝑥D
⋮

𝑓D 𝑥>, 𝑥", 𝑥E, … , 𝑥D

If looking for a solution to 𝒇 𝒙 = 𝒚, then instead solve

𝒇 𝒙 = 𝒇 𝒙 − 𝒚 = 𝟎

Newton’s method
Approximate the nonlinear function 𝒇 𝒙 by a linear function using
Taylor expansion:

𝒇 𝒙 + 𝒔 ≈ 𝒇 𝒙 + 𝑱 𝒙 𝒔

where 𝑱 𝒙 is the Jacobian matrix of the function 𝒇:

𝑱 𝒙 =

FG" 𝒙
FC"

… FG" 𝒙
FC#

⋮ ⋱ ⋮
FG# 𝒙
FC"

… FG# 𝒙
FC#

or 𝑱 𝒙 IJ =
FG$ 𝒙
FC%

Set 𝒇 𝒙 + 𝒔 = 𝟎 ⟹ 𝑱 𝒙 𝒔 = −𝒇 𝒙

This is a linear system of equations (solve for 𝒔)!

Newton’s method
Algorithm:

𝒙A = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑔𝑢𝑒𝑠𝑠
Solve 𝑱 𝒙. 𝒔.= −𝒇 𝒙.
Update 𝒙.=> = 𝒙.+ 𝒔.

Convergence:
• Typically has quadratic convergence
• Drawback: Still only locally convergent

Cost:
• Main cost associated with computing the Jacobian matrix and solving

the Newton step.

Newton’s method - summary
q Typically quadratic convergence (local convergence)

q Computing the Jacobian matrix requires the equivalent of 𝑛" function
evaluations for a dense problem (where every function of 𝒇 𝒙 depends
on every component of 𝒙).

q Computation of the Jacobian may be cheaper if the matrix is sparse.

q The cost of calculating the step 𝒔 is 𝑂 𝑛E for a dense Jacobian matrix
(Factorization + Solve)

q If the same Jacobian matrix 𝑱 𝒙. is reused for several consecutive
iterations, the convergence rate will suffer accordingly (trade-off
between cost per iteration and number of iterations needed for
convergence)

Example
Consider solving the nonlinear system of equations

2 = 2𝑦 + 𝑥
4 = 𝑥" + 4𝑦"

What is the result of applying one iteration of Newton’s method with the
following initial guess?

𝒙A =
1
0

Finite Difference
Find an approximate for the Jacobian matrix:

𝑱 𝒙 =

%&% 𝒙
%(%

… %&% 𝒙
%(&

⋮ ⋱ ⋮
%&& 𝒙
%(%

… %&& 𝒙
%(&

or 𝑱 𝒙)* =
%&' 𝒙
%((

𝜕𝑓 𝑥
𝜕𝑥 ≈

𝑓 𝑥 + ℎ − 𝑓 𝑥
ℎ

In 1D:

In ND:

𝑱 𝒙 IJ =
FG$ 𝒙
FC%

≈
G$ 𝒙=K 𝜹% 0G$ 𝒙

K

