Optimization
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Optimization

Goal: Find the minimizer X that minimizes the objective (cost
J

function f(x): R" - R

Unconstrained Optimization

f(x*) = min f (x)

Constrained Optimization

f(x*) = min f (x)
S.T. g(x) — () ——— Equality constraints

h(x) <0

Inequality constraints
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Optimization
*  What if we are looking for a maximizer x*?
f(x") = max f(x)
We can instead solve the minimization problem
f(x") = min(—f(x))
* What if constraint is h(x) > 0?

* What if method only has inequality constraints?




Calculus problem: maximize the rectangle
area subject to perimeter constraint

L{Ié%g(z f(dhdz) — dl X (]'.rg

such that gldy,dy) =2(dy +dy) —20 <0

Demo: Constrained-Problem-2D /
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Does the solution exists? Local or global

solution?
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Types of optimization problems

f ( x*) — mx!n f ( x) f: nonlinear, continuous

and smooth

Gradient-free methods

Evaluate f (x)

Gradient (ﬁrst—derivative) methods

Evaluate f(x), V[ (x)

Second-derivative methods

S Evaluate f (x), Vf(x), sz(X)
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Taking derivatives...
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What 1s the optimal solution?
f(x*) = min f(x)
(First-order) Necessary condition
f'x)=0
Vf(x) =0

(Second—order) Sufficient condition

f'"(x) >0

Vif(x) =H f is positive definite
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Example (1D)

Consider the function f (x) = 9; —

4

x3
— - 11 x?% + 40x

Find the stationary point and check the sufficient condition
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Example (ND)

Consider the function f(Xxq,X5) = ZXE + 4X22 + 2x,

Find the stationary point and check the sufficient condition
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Optimization in 1D:
Golden Section Search

e  Similar idea of bisection method for root finding
* Needs to bracket the minimum inside an interval

* Required the function to be unimodal
A function f: R — R is unimodal on an interval [a, D]

V' There is a unique X* € [a, b] such that f(x*) is the minimum in
[a, b]
v' For any X1, X, € [a, b] with x; < x;

" X <X = f(x1) > fx2)
" X > x> f(x) < fx)
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X1 X ¢ |Xa X3 X1 X ¢ |Xa X3
) a < i > ) a < i >
b b
fo<fa f2>fa
x*€[xq, x4] x*€[xy, x3]

Such method would in general require 2 new function evaluations per iteration. How can

we select the points X5, X4 such that only one function evaluation is required?
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Golden Section Search
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Golden Section Search

What happens with the length of the interval after one iteration?
hl =T hO
Or in general: Ryg4q = T hy

Hence the interval gets reduced by T

(for bisection method to solve nonlinear equations, 7=0.5)

For recursion:
thi=0—-1)h,
tth, =(1—1)h,
2=(1-1)
T=0.618

Demo: Golden \

Section Proportions




g
Golden Section Search

* Derivative free method!
* Slow convergence:

o |ex+1]
lim

= 0.618 r =1 (linear convergence)

o Only one function evaluation per iteration
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Iclicker question

Consider running golden section search on a function that is unimodal. If golden
section search is started with an initial brakcet of [—10, 10], what is the length
of the new bracket after 1 iteration?
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Newton’s Method

Using Taylor Expansion, we can approximate the function f with a quadratic

function about X

fG) = f(xo) + £ (o) (x — x0) + £ (x0) (x — x0)?

And we want to find the minimum of the quadratic function using the

first-order necessary condition

flfx) =0 mmp f'(x) +f"(xg)(x—2x5) =0
—f"(x0)

[ (xo)

Note that this is the same as the step for the Newton’s method to solve
the nonlinear equation f '(x) =0

h=(x—x,) wmm)p h=
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Newton’s Method

* Algorithm:
Xo = starting guess

X1 = X — () /f (x)

* Convergence:
* 'Typical quadratic convergence
* Local convergence (start guess close to solution)

* May fail to converge, or converge to a maximum or

point of inflection

Demo: "Newton’s method in 1D”

K And “Newton’s method Initial Guess”/
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Newton’s Method (Graphical Representation)

N X

™




g

lclicker

Consider the function f(x) = 4 x3+2x%*+5x+40

If we use the initial guess Xy = 2, what would be the value of X after one

iteration of the Newton’s method?

A) x, = 2.852
B) x; = 1.147
C) x; = 3.173
D) x; = 0.827
E) NOTA




Optimization in ND:
Steepest Descent Method
f(x1,x2) = (1 — 1%+ (xz — 1)?

7 \

Given a function
f(x):R™ - R ata point

X, the function will decrease

its value in the direction of

steepest descent: =V f (x)

Iclicker question:
What is the steepest descent

direction?

-
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Steepest Descent Method

Start with initial guess:

Xo = [g] 4f(x1/; x3) = (x1 —

1)%4+(x, — 1)*

Check the update:

x1 = x9 — Vf(xp)

V() = [ﬁgﬁl

a =[] =[] = -1

How far along the gradient

direction should we go?
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Steepest Descent Method

Update the variable with: , .
Xik+1 = X — aka(xk) f(xll Xz) — (x1 — 1) -|—(x2 — 1)

How far along the gradient
should we go?What is the “best
size” for a,?

A) O

B) 0.5

C) 1

D) 2

E) Cannot be determined

-
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Steepest Descent Method

Algorithm:

Initial guess: X

Evaluate: S= —Vf(xk)

Perform a line search to obtain @y, (for example, Golden Section

Search)

a;, = argmin f(x, + a s)
a

Update: Xik+1 = X + di Si
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Demo: Steepest Descent 20

Convergence: linear
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Iclicker question:

Consider minimizing the function

fxg,x2) = 10(x1)° — (x2)* + %, — 1

Given the initial guess
X1 = 2, Xo = 2

what is the direction of the first step of gradient descent?

—61] - 120
A) 4 C) T4

—61 —121
B) PR D) 4
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Newton’s Method

Using Taylor Expansion, we build the approximation:

FG+5) ~ () +VF()Ts 45 5TH(x) 5 = f(5)

And we want to find the minimum f (S), so we enforce the first-order

necessary condition

Vi(s) = 0= Vf(x) + %2 H¢(x)s =0

m=) He(x)s=-Vf(x)

Which becomes a system of linear equations where we need to solve for

the Newton step S




Newton’s Method

Algorithm:
Initial guess: X

Solve: Hf(xk) S, = —Vf(xk)
Update: Xik+1 = X + S

Note that the Hessian is related to the curvature and therefore contains the

information about how large the step should be.
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Iclicker question

To find a minimum of the function f(x,y ) = 3x?% +

2y?, which is the expression for one step of Newton'’s
method?

A1 a4 B O I

B) [;i:‘z_lo 4] [Z;ﬂ

C) [xk+1] _[6 O]T 6xk]

Yk+1 0 41 |4y,
D) [xk+1 k ] [6xk]
yk+1 4y
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Iclicker question:
f(x,y) = 0.5x% + 2.5y?

When using the Newton’s Method to find the minimizer of this
function, estimate the number of iterations it would take for

convergence?

A)1 B)2-5 C)5-10 D) Morethan 10 E) Depends on the initial guess
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Newton’s Method Summary

Algorithm:

Initial guess: X

Solve: He(xy) s, = —Vf(xy)
Update: Xg 41 = X + S

About the method...
* Typical quadratic convergence ©
* Need second derivatives ®
* Local convergence (start guess close to solution)
*  Works poorly when Hessian is nearly indefinite
* Cost per iteration: 0 (Tlg)

K Demo: "Newton’s method in n dimensions”

/
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Demo: "Newton’s method in n dimensions”\

Example:

https://en.wikipedia.org/wiki/Rosenbrock_function
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Iclicker question:

Recall Newton's method and the steepest descent method for
minimizing a function f(x): R™ — R. How many statements
below describe the Newton Method’s only (not both)?

Convergence is linear

. Requires a line search at each iteration
Evaluates the Gradient of f(X) at each iteration
Evaluates the Hessian of f(x) at each iteration
Computational cost per iteration is 0 (n?)

Gl P W N =

A)1 B)2 C)3 D)4 E)5




