
Rounding errors 



Example
Show demo: “Waiting for 1”.
Determine the double-precision machine representation for 0.1

0.1 = 0.000110011 0011… ! = 1.100110011… !×2"#

𝑓 = 100110011… 00110011010

𝑚 = −4

𝑐 = 𝑚 + 1023 = 1019 = 01111111011 !

𝑠 = 0
#×𝟐 Integer 

part
Fractional
part

0.2 0 0.2

0.4 0 0.4

0.8 0 0.8

1.6 1 0.6

1.2 1 0.2

0.4 0 0.4

0.8 0 0.8

1.6 1 0.6

1.2 1 0.2

0 01111111011 10011…0011…0011010

(52-bit)

Roundoff error in its basic form!



Machine floating point number
• Not all real numbers can be exactly represented as a machine floating-point 

number.
• Consider a real number in the normalized floating-point form:

𝑥 = ±1. 𝑏!𝑏"𝑏#…𝑏$…× 2%
• The real number 𝑥 will be approximated by either 𝑥& or 𝑥', the nearest two 

machine floating point numbers.

𝑥𝑥0 𝑥10 +∞

𝑥$ = 1. 𝑏%𝑏&𝑏'…𝑏(× 2) (rounding by chopping)

𝑥 = 1. 𝑏%𝑏&𝑏'…𝑏(…× 2)Exact number:

Without loss of generality, let’s see what happens when trying to represent a positive 
machine floating point number:

𝑥* = 1. 𝑏%𝑏&𝑏'…𝑏(× 2)+ 0.000…01× 2)

𝜖$



𝑥𝑥0 𝑥10 +∞

𝑥$ = 1. 𝑏%𝑏&𝑏'…𝑏(× 2)
𝑥 = 1. 𝑏%𝑏&𝑏'…𝑏(…× 2)Exact number:

𝑥* = 1. 𝑏%𝑏&𝑏'…𝑏(× 2)+ 0.000…01× 2)

𝜖$

Gap between 𝑥' and 𝑥&: 𝑥% − 𝑥" = 𝜖$ × 2$

Examples for single precision:
𝑥' and 𝑥& of the form 𝑞 × 2&!(: 𝑥' − 𝑥& = 2&##≈ 10&!(
𝑥' and 𝑥& of the form 𝑞 × 2): 𝑥' − 𝑥& = 2&!*≈ 2× 10&+
𝑥' and 𝑥& of the form 𝑞 × 2"(: 𝑥' − 𝑥& = 2&#≈ 0.125
𝑥' and 𝑥& of the form 𝑞 × 2+(: 𝑥' − 𝑥& = 2#,≈ 10!!

The interval between successive floating point numbers is not uniform: the interval is smaller as the 
magnitude of the numbers themselves is smaller, and it is bigger as the numbers get bigger.



Gap between two successive machine floating point numbers

A ”toy” number system can be represented as 𝑥 = ±1. 𝑏4𝑏5×26
for 𝑚 ∈ [−4,4] and 𝑏- ∈ {0,1}.

1.00 ! ×2& = 1
1.01 ! ×2& = 1.25
1.10 ! ×2& = 1.5
1.11 ! ×2& = 1.75

1.00 ! ×2"' = 0.5
1.01 ! ×2"' = 0.625
1.10 ! ×2"' = 0.75
1.11 ! ×2"' = 0.875

1.00 ! ×2' = 2
1.01 ! ×2' = 2.5
1.10 ! ×2' = 3.0
1.11 ! ×2' = 3.5

1.00 ! ×2! = 4.0
1.01 ! ×2! = 5.0
1.10 ! ×2! = 6.0
1.11 ! ×2! = 7.0

1.00 ! ×2( = 8.0
1.01 ! ×2( = 10.0
1.10 ! ×2( = 12.0
1.11 ! ×2( = 14.0

1.00 ! ×2# = 16.0
1.01 ! ×2# = 20.0
1.10 ! ×2# = 24.0
1.11 ! ×2# = 28.0

1.00 ! ×2"! = 0.25
1.01 ! ×2"! = 0.3125
1.10 ! ×2"! = 0.375
1.11 ! ×2"! = 0.4375

1.00 ! ×2"( = 0.125
1.01 ! ×2"( = 0.15625
1.10 ! ×2"( = 0.1875
1.11 ! ×2"( = 0.21875

1.00 ! ×2"# = 0.0625
1.01 ! ×2"# = 0.078125
1.10 ! ×2"# = 0.09375
1.11 ! ×2"# = 0.109375



Rounding
The process of replacing 𝑥 by a nearby machine number is called 
rounding, and the error involved is called roundoff error.

Round to nearest: either round up or round down, whichever is closer

𝑥𝑥0 𝑥10 +∞𝑥𝑥1 𝑥0−∞

Round 
towards 
+∞

Round 
towards 
−∞

Round 
towards 
zero

Round 
towards 
zero

𝑥 is positive number 𝑥 is negative number

Round up (ceil) 𝑓𝑙 𝑥 = 𝑥%
Rounding towards +∞

𝑓𝑙 𝑥 = 𝑥"
Rounding towards zero

Round down (floor) 𝑓𝑙 𝑥 = 𝑥"
Rounding towards zero

𝑓𝑙 𝑥 = 𝑥%
Rounding towards −∞

Round by chopping: 𝑓𝑙 𝑥 = 𝑥&



Rounding (roundoff) errors
Consider rounding by chopping:

• Absolute error:

)l(𝑥) − 𝑥 ≤ 𝑥1 − 𝑥0 = 𝜖6 × 26

)l(𝑥) − 𝑥 ≤ 𝜖6 × 26

• Relative error:

)l(𝑥) − 𝑥
𝑥

≤
𝜖6 × 26

1. 𝑏4𝑏5𝑏>…𝑏?…× 26

)l(𝑥) − 𝑥
𝑥

≤ 𝜖6



Rounding (roundoff) errors

Single precision: Floating-point 
math consistently introduces relative 
errors of about 100@. Hence, single 
precision gives you about 7 
(decimal) accurate digits. 

𝑥0 𝑥1

2𝑥 − 𝑥
|𝑥|

≤ 205>≈ 1.2×100@
2𝑥 − 𝑥
|𝑥|

≤ 20A5≈ 2.2×1004B

𝑥 = 1. 𝑏4𝑏5𝑏>…𝑏?…× 26

Double precision: Floating-point 
math consistently introduces 
relative errors of about 1004B. 
Hence, double precision gives you 
about 16 (decimal) accurate digits. 



Iclicker question
Assume you are working with IEEE single-precision numbers. Find the smallest 
number 𝑎 that satisfies

2C + 𝑎 ≠ 2C

A) 204D@E
B) 204D55
C) 20A5
D) 204A
E) 20C



Demo



Arithmetic with machine numbers



Mathematical properties of FP operations
Not necessarily associative: 
For some 𝑥 , 𝑦, 𝑧 the result below is possible:

𝑥 + 𝑦 + 𝑧 ≠ 𝑥 + (𝑦 + 𝑧)

Not necessarily distributive: 
For some 𝑥 , 𝑦, 𝑧 the result below is possible:

𝑧 𝑥 + 𝑦 ≠ 𝑧 𝑥 + 𝑧 𝑦

Not necessarily cumulative: 
Repeatedly adding a very small number to a large number may do nothing



Floating point arithmetic (basic idea)

• First compute the exact result
• Then round the result to make it fit into the desired precision

• 𝑥 + 𝑦 = 𝑓𝑙 𝑥 + 𝑦

• 𝑥 × 𝑦 = 𝑓𝑙 𝑥 × 𝑦

𝑥 = (−1)𝒔 1. 𝒇 × 2𝒎 = 𝒔 𝒄 𝒇



Floating point arithmetic
Consider a number system such that 𝑥 = ±1. 𝑏4𝑏5𝑏>×26
for 𝑚 ∈ [−4,4] and 𝑏- ∈ {0,1}.

𝑎 = 1.101 5 ×24
𝑏 = 1.001 5 ×24

Rough algorithm for addition and subtraction:
1. Bring both numbers onto a common exponent
2. Do “grade-school” operation
3. Round result

𝑐 = 𝑎 + 𝑏 = 10.110 5 ×24 = 1.011 5 ×25

• Example 1: No rounding needed



Floating point arithmetic
Consider a number system such that 𝑥 = ±1. 𝑏4𝑏5𝑏>×26
for 𝑚 ∈ [−4,4] and 𝑏- ∈ {0,1}.

𝑎 = 1.101 5 ×2D
𝑏 = 1.000 5 ×2D

𝑐 = 𝑎 + 𝑏 = 10.101 5 ×2D ≈ 1.010 5 ×24

• Example 2: Require rounding

𝑎 = 1.100 5 ×24
𝑏 = 1.100 5 ×204

𝑐 = 𝑎 + 𝑏 = 1.100 5 ×24 + 0.011 5 ×24 = 1.111 5 ×24

• Example 3:



Floating point arithmetic
Consider a number system such that 𝑥 = ±1. 𝑏4𝑏5𝑏>𝑏E×26
for 𝑚 ∈ [−4,4] and 𝑏- ∈ {0,1}.

𝑎 = 1.1011 5 ×24
𝑏 = 1.1010 5 ×24

𝑐 = 𝑎 − 𝑏 = 0.0001 5 ×24

• Example 4:

Or after normalization: 𝑐 = 1. ? ? ? ? 5 ×20>

Unfortunately there is not data to indicate what the missing digits 
should be. The effect is that the number of significant digits in the 
result is reduced. Machine fills them with its best guess, which is 
often not good (usually what is called spurious zeros). This 
phenomenon is called Catastrophic Cancellation.

https://en.wikipedia.org/wiki/Significant_digit


Cancellation
𝑎 = 1. 𝑎4𝑎5𝑎>𝑎E𝑎A𝑎B…𝑎?…×264
𝑏 = 1. 𝑏4𝑏5𝑏>𝑏E𝑏A𝑏B…𝑏?…×265

Suppose 𝑎 ≈ 𝑏 and single precision (without loss of generality)

𝑎 = 1. 𝑎4𝑎5𝑎>𝑎E𝑎A𝑎B…𝑎5D𝑎5410𝑎5E𝑎5A𝑎5B𝑎5@…×26

𝑏 = 1. 𝑎4𝑎5𝑎>𝑎E𝑎A𝑎B…𝑎5D𝑎5411𝑏5E𝑏5A𝑏5B𝑏5@…×26

𝑓𝑙(𝑏 − 𝑎) = 0.0000…0001×26 = 1. ? ? ? ? ? ?… ? ?×20?16

𝑓𝑙 𝑏 − 𝑎 = 1.000…00×20?16

Lost due to 
rounding

Not significant bits (precision lost, not due to 𝑓𝑙(𝑏 − 𝑎) but due to 
rounding of a, 𝑏 from the beginning



Example of cancellation:



Loss of significance
Assume 𝑎 ≫ 𝑏. For example

𝑎 = 1. 𝑎4𝑎5𝑎>𝑎E𝑎A𝑎B…𝑎?…×2D
𝑏 = 1. 𝑏4𝑏5𝑏>𝑏E𝑏A𝑏B…𝑏?…×20C

In Single Precision (without loss of generality):

𝑓𝑙(𝑎) = 1. 𝑎4𝑎5𝑎>𝑎E𝑎A𝑎B…𝑎55𝑎5>×2D
𝑓𝑙(𝑏) = 1. 𝑏4𝑏5𝑏>𝑏E𝑏A𝑏B…𝑏55𝑏5>×20C

1. 𝑎4𝑎5𝑎>𝑎E𝑎A𝑎B𝑎@𝑎C𝑎N…𝑎55𝑎5>×2D

0.00000001𝑏4𝑏5𝑏>𝑏E𝑏A…𝑏4E𝑏4A×2D+

In this example, the result 𝑓𝑙 𝑎 + 𝑏 includes 15 bits of precision from 
𝑓𝑙(𝑏). Lost precision! 



Loss of Significance

How can we avoid this loss of significance? For example, consider the 
function 𝑓 𝑥 = 𝑥5 + 1 − 1

If we want to evaluate the function for values 𝑥 near zero, there is a 
potential loss of significance in the subtraction.

For example, if 𝑥 = 100> and we use five-decimal-digit arithmetic
𝑓 100> = (100>)5 + 1 − 1 = 0

How can we fix this issue?



Loss of Significance

Re-write the function as 𝑓 𝑥 = O!

O!1404
(no subtraction!)

Evaluate now the function for 𝑥 = 100> using five-decimal-digit 
arithmetic

𝑓 100> = (4D"#)!

(4D"#)!1404
= 4D"$

5



Example:
If x = 0.3721448693 and y = 0.3720214371 what is the relative error in the computation of  
(x − y) in a computer with five decimal digits of accuracy? 

Using five decimal digits of accuracy, the numbers are rounded as:
Rl(x) = 0.37214 and	Rl(y) = 0.37202

Then the subtraction is computed:
Rl x − Rl(y) = 0.37214 − 0.37202 = 0.00012

The result of the operation is: Rl x − y = 1.20000 ×10"! (the last digits are filled with spurious 
zeros)
The relative error between the exact and computer solutions is given by

x − y − Rl x − y
| x − y |

=
0.0001234322 − 0.00012

0.000123432
=
0.0000034322
0.000123432

≈ 3×10"!

Note that the magnitude of the error due to the subtraction is large when compared with the relative 
error due to the rounding

|x − Rl x |
|x| ≈ 1.3×10")


