Least Squares and Data Fitting
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World Petroleum Consumption

Data fitting

How do we best fit a set of data points?
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Linear Least Squares

1) Fitting with a line

Given M data points {t1,v1} -, {tm, Yim}}, we want to find the function
y=X,+x1t
that best fit the data (or better, we want to find the coefficients x,, X1).

Thinking geometrically, we can think “what is the line that most nearly passes

through all the points?”
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Given m data points {{t1, ¥1}, ---, {tm, YmJ}}, we want to find x, and x
such that

Vi =X, T+ X1 0 Vi € [1,m]

Note that this system of
linear equations has more

or in matrix form:
1 t X V1
: : [ 0] = | : — tions than unknowns —
) | X1 A x — b cqua
1 tn Ym OVERDETERMINED
mxn nx1 mx1 SYSTEMS

We want to find the appropriate linear combination of the columns of A4

that makes up the vector b.

If a solution exists that satisfies A X = b then b € range(A)
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/Linear Least Squares

* Inmost cases, b € range(A) and A x = b does not have an
exact solution!
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* Therefore, an overdetermined system is better expressed as

Ax=Db
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Linear Least Squares

* Least Squares: find the solution X that minimizes the residual

r=b—Ax
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* Let’s define the function ¢ as the square of the 2-norm of the residual

. ¢(x) = |b— Ax||5
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Linear Least Squares

* Least Squares: find the solution X that minimizes the residual
r=b—-—Ax
* Let’s define the function ¢ as the square of the 2-norm of the residual
¢(x) = |Ib — A x||3

* Then the least squares problem becomes

mxin o (x)

* Suppose ¢: R™ — R is a smooth function, then ¢p(x) reaches a (local)

maximum or minimum at a point X e RM only if

N Vp(x*) =0 Y,
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How to find the minimizer?

* To minimize the 2-norm of the residual vector
min ¢ (x) = [|b — A x||;

p(x)=(b—-Ax)"(b—Ax)

Vop(x) =2(AT b —ATA x)

Normal Eq uations — solve a

linear system of equations
First order necessary condition:

Vo(x) =0->ATh—-—ATAx=0->A4"4Ax = A" b

Second order sufficient condition:
D?¢(x) = 2ATA

24TA is a positive semi-definite matrix - the solution is a

kminimum
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Linear Least Squares (another approach)

* Find y = A x which is closest to the vector b
* What is the vector y = A x € range(A) that is closest to vector ¥ in

the Euclidean norm?

Whenr = b —y = b — A x is orthogonal to all columns of A, then ¥ is closest to b

\_ ATr=AT(b—Ax)=0 ——— ATAx = A" b
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Summary;

A is a mXn matrix, where m > n.

m is the number of data pair points. 1 is the number of parameters of the

“best fit” function.
Linear Least Squares problem Ax=Db always has solution.

The Linear Least Squares solution X minimizes the square of the 2-norm
of the residual:

min||b — A x||5
X

One method to solve the minimization problem is to solve the system of

Normal Equations

ATAx=ATbh

Let’s see some examples and discuss the limitations of this method.
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t
array([-1.61477467, -2.3970584 , -0.30372944, 2.26304537, 2.188127
b
array([ 0.74112251, -0.57768693, 3.33523097, 6.29377547, 4.44786481])

Solve: ATAx=AT b

X

Karray([2.81441707, 1.24048133])

1)
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Data fitting - not always a line fit!

* Does not need to be a line! For example, here we are fitting the data

using a quadratic

12

curve.

2.18+2.67 t-238 2
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Linear Least Squares: The problem is linear 1n its coefficients!
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Another examples

We want to find the coefticients of the quadratic function that best
fits the data points:

Y =Xg+x; t+ xy t?

0.8 X
_ %

0.7

06 e

0.5 -

025 0.50 0.75 1.00

We would not want our “fit” curve to pass through the data points exactly as we are
looking to model the general trend and not capture the noise.

-

™~

/



s

Data fitting
_ .
? t.l t.l zcco y;l Solve: ATAx =A" b
: : : 1| =
1 t, th|Y2d m
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Which function is not suitable for linear least squares?

A)y=a+bx+cx?*+dx?
B)y=x(a+bx+cx*+dx3)
C)y = asin(x) + b/ cos(x)
D)y = asin(x) + x/ cos(bx)
E)y=ae ?* + be?*
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Computational Cost

ATAx=A"bh

Compute ATA. 0 (mnz)

Factorize ATA: LU - 0 (gn?’), Cholesky = O (% Tl3)
Solve 0 (n?)

Since M > 7 the overall cost is O (Mmn?)




Short questions

Given the data in the
table below, which of the

plots shows the line of

best fit in terms of least

squares?




e

-

Short questions

Given the data in the table below, and the least squares model

y =c1 + ¢y sin(tm) + c3sin(tm/2) + c4 sin(tm/4)

written in matrix form as 1
(6) ~
A =Yy i Vi
C3
o 05 072
determine the entry A,3 of the matrix A. 10 0.79
Note that indices start with 1. 1.5 0.72
A)—1.0 2.0 0.97
B) 1.0 2.5 1.03
C)—0.7 30 096
D) 0.7 | '




Solving Linear Least Squares with

SVD
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What we have learned so far...

A is a M XN matrix where m > n

(more points to fit than coefficient to be determined)
Normal Equations: ATAx = A" b

* The solution A X = b is unique if and only if rank (A) =n
(A is full column rank)

* rank(A) =n - columns of A are linearly independent = 1 non-zero
singular values = AT A has only positive eigenvalues - ATAisa symmetric

and positive definite matrix — AT A is invertible
x=(ATA) 14T b

* Ifrank(A) < n, then 4 is rank-deficient, and solution of linear least squares

problem is not unique.
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Condition number for Normal Equations

Finding the least square solution of A X = b (where A is full rank matrix)

using the Normal Equations

ATAx=A"Tbh

has some advantages, since we are solving a square system of linear equations
with a symmetric matrix (and hence it is possible to use decompositions such

as Cholesky Factorization)

However, the normal equations tend to worsen the conditioning of the

matrix.

cond(ATA) = (cond(A4))?

How can we solve the least square problem without squaring the
condition of the matrix?

- /
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SVD to solve linear least squares

problems

AisamXn rectangular matrix where m > n, and hence the SVD

decomposition is given by:

S
A=<u1 um> “On SR
P . VL

We want to find the least square solution of A X = b, where A = U X vT

or better expressed in reduced form: A = Ugp Xp v

-
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Recall Reduced SVD m>n

Il

=Up Zp VI
/ / N
mXn mXn nXxn
nxn
j
n 0,

(7T T M ™ O
4 [T vh n
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Shapes of the Reduced SVD

Suppose you compute a reduced SVD A = UZVT of a 10 X 14 matrix A. What will the shapes of U, =, and V be?
Hint: Remember the transpose on V!

The shape of U will be X
The shape of X will be X
The shape of V will be X
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SVD to solve linear least squares

problems
A=Up Zp VI

. P\ (o1 .. Vi
A=lu .. u, : :
: : T
P 0n/) \-- Vp

We want to find the least square solution of A X = b, where A = Uy Xp v
Normal equations: A"Ax=A"b — (Ug Zp V') '(Ug Zp V)x = Ug Zp V')'b

VEIRUL (U ZRVDx =V ZIRU"'b

VEIgIZp Vix =V IRU:'D

(ZR )2 Vix=2XxU RTb When can we take the inverse of the singular matrix?
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(ZR)2Vix=XpUpx"b

1) Full rank matrix (g; # 0 Vi):

Unique solution:

rank(4) = n _y (Z )
R
Vix = (XZp )_1URTb / / ” \
nxn nXTl

2) Rank deficient matrix (rank(4) =r < n)

(XZp )2 Vix = YR URTb Solution is not unique!!
Find solution X such that mxin ¢p(x)=1[b—A x”%

and also min||x||,
X

-
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2) Rank deficient matrix (continue)

We want to find the solution X that satisfies (Zg ) Vix = ZpU RTb and also satisfies

min||x||
X

Change of variables: Set Vix = Yy and thensolve Zp y = U RTb for the variable y

O-T'
Evaluate
x=Vy= (171

T
u;b .
Tb yl: L l:1,2,...,7‘
\ Y1 / t \ i
: }b What do we do when i > 17?7
Yo |=| Wr Which choice of y; will minimize
yT'+1 uzj_l_lb
: 5 lxllz = IV yll2?
0/ I \ ulb /
Set y; =0, i=r+1,..,n
: 1 n n ( Tb)
Y2 u;
vn> 2| — xzzyivizz v,
= Vn i=1 i=1
o;#0




Solving Least Squares Problem with SVD
(summary)

Cost of SVD:
2
* Find X that satisfies min ||b — A4 x||5 O(m n )
x
* Find Y that satisfies min|| 2 ¥ — Us"b ||Z
y
* Propose Y that is solution of X y = URTb Cost:
* Evaluate: Z = URTb ” mn
(2 .
—l, if o; + 0 )
* Set: y; =19 i=1,..,n > n
0, otherwise
2
* Then compute x =V'y g n

™~
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Solving Least Squares Problem with SVD
(summary)

* If g;# 0for Vi =1, ...,n, then the solutiony = V ( Zp )_1URT b is

unique (and not a “choice”).

* Ifat least one of the singular values is zero, then the proposed solution Y is

the one with the smallest 2-norm ( ||y||, is minimal ) that minimizes the

2-norm of the residual ” YR Y — URTb”z

 Since|lx|lo = [V yllo= ||¥ll,, then the solution X is also the one with
the smallest 2-norm ( || x|, is minimal ) for all possible X for which
|Ax — b||, is minimal.
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Solving Least Squares Problem with SVD
(summary)

Solve Ax = borUp ZpVIix = b

x=VE)tU"' b




Example:

Consider solving the least squares problem A X = b, where the singular value decomposition of
the matrix A = U X VT x is:

"1 _1 o9 o] . i o
/2 /2 14 0 0 Lo o 12
L L 00 0 14 0 9
V2 V2 0 0 0 Ole%9
0 0 0 1 0 0 1 10
0 0 10_-000- -

Determine ||b — A x||2
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Example

Suppose you have A = U X VT x calculated. What is the cost of solving

min||b — A4 x||5 ?
X

A) O(n)
B) 0(n?%)
C) O(mn)
D) 0(m)
E) 0(m?)




