
Least Squares and Data Fitting



How do we best fit a set of data points?

Data fitting



Given𝑚 data points { 𝑡!, 𝑦! , … , 𝑡", 𝑦" }, we want to find the function 
𝑦 = 𝑥! + 𝑥" 𝑡

that best fit the data (or better, we want to find the coefficients 𝑥#, 𝑥!).

Thinking geometrically, we can think “what is the line that most nearly passes 
through all the points?”

Linear Least Squares 
1) Fitting with a line



Given𝑚 data points { 𝑡!, 𝑦! , … , 𝑡", 𝑦" }, we want to find 𝑥# and 𝑥!
such that 

𝑦$ = 𝑥# + 𝑥! 𝑡$ ∀𝑖 ∈ 1,𝑚

or in matrix form: Note that this system of 
linear equations has more 
equations than unknowns –
OVERDETERMINED 
SYSTEMS𝒎×𝒏 𝒏×𝟏 𝒎×𝟏

1 𝑡!
⋮ ⋮
1 𝑡"

𝑥#
𝑥! =

𝑦!
⋮
𝑦"

𝑨 𝒙 = 𝒃

We want to find the appropriate linear combination of the columns of 𝑨
that makes up the vector 𝒃. 

If a solution exists that satisfies 𝑨 𝒙 = 𝒃 then 𝒃 ∈ 𝑟𝑎𝑛𝑔𝑒(𝑨)



Linear Least Squares
• In most cases, 𝒃 ∉ 𝑟𝑎𝑛𝑔𝑒(𝑨) and 𝑨 𝒙 = 𝒃 does not have an 

exact solution!

• Therefore, an overdetermined system is better expressed as

𝑨 𝒙 ≅ 𝒃



Linear Least Squares
• Least Squares: find the solution 𝒙 that minimizes the residual

𝒓 = 𝒃 − 𝑨 𝒙

• Let’s define the function 𝜙 as the square of the 2-norm of the residual

𝜙 𝒙 = 𝒃 − 𝑨 𝒙 %
%



Linear Least Squares
• Least Squares: find the solution 𝒙 that minimizes the residual

𝒓 = 𝒃 − 𝑨 𝒙

• Let’s define the function 𝜙 as the square of the 2-norm of the residual

𝜙 𝒙 = 𝒃 − 𝑨 𝒙 %
%

• Then the least squares problem becomes
min
𝒙
𝜙 (𝒙)

• Suppose 𝜙:ℛ" → ℛ is a smooth function, then 𝜙 𝒙 reaches a (local) 
maximum or minimum at a point  𝒙∗ ∈ ℛ" only if 

∇𝜙 𝒙∗ = 0



How to find the minimizer?
• To minimize the 2-norm of the residual vector 

min
𝒙
𝜙 𝒙 = 𝒃 − 𝑨 𝒙 %

%

𝜙 𝒙 = (𝒃 − 𝑨 𝒙)((𝒃 − 𝑨 𝒙)

∇𝜙 𝒙 = 2(𝑨( 𝒃 − 𝑨(𝑨 𝒙)

First order necessary condition:
∇𝜙 𝒙 = 0 → 𝑨( 𝒃 − 𝑨(𝑨 𝒙 = 𝟎 → 𝑨(𝑨 𝒙 = 𝑨( 𝒃

Second order sufficient condition:
𝐷%𝜙 𝒙 = 2𝑨(𝑨
2𝑨(𝑨 is a positive semi-definite matrix → the solution is a 
minimum

Normal Equations – solve a 
linear system of equations



Linear Least Squares (another approach)
• Find 𝒚 = 𝑨 𝒙 which is closest to the vector 𝒃
• What is the vector 𝒚 = 𝑨 𝒙 ∈ 𝑟𝑎𝑛𝑔𝑒(𝑨) that is closest to vector 𝒚 in 

the Euclidean norm? 

When 𝒓 = 𝒃 − 𝒚 = 𝒃 − 𝑨 𝒙 is orthogonal to all columns of 𝑨, then 𝒚 is closest to 𝒃

𝑨𝑻𝒓 = 𝑨𝑻(𝒃 − 𝑨 𝒙)=0 𝑨"𝑨 𝒙 = 𝑨" 𝒃



Summary:
• 𝑨 is a 𝑚×𝑛 matrix, where 𝑚 > 𝑛. 
• 𝑚 is the number of data pair points. 𝑛 is the number of parameters of the 

“best fit” function.

• Linear Least Squares problem 𝑨 𝒙 ≅ 𝒃 always has solution.

• The Linear Least Squares solution 𝒙 minimizes the square of the 2-norm 
of the residual:

min
𝒙

𝒃 − 𝑨 𝒙 %
%

• One method to solve the minimization problem is to solve the system of  
Normal Equations

𝑨(𝑨 𝒙 = 𝑨( 𝒃

• Let’s see some examples and discuss the limitations of this method.



Example:

Solve: 𝑨#𝑨 𝒙 = 𝑨# 𝒃



• Does not need to be a line! For example, here we are fitting the data 
using a quadratic curve.

Data fitting - not always a line fit!

Linear Least Squares: The problem is linear in its coefficients!



Another examples
We want to find the coefficients of the quadratic function that best 
fits the data points:

We would not want our “fit” curve to pass through the data points exactly as we are 
looking to model the general trend and not capture the noise.

𝑦 = 𝑥! + 𝑥" 𝑡 + 𝑥# 𝑡#



Data fitting

1 𝑡! 𝑡!"
⋮ ⋮ ⋮
1 𝑡# 𝑡#"

𝑥$
𝑥!
𝑥"

=
𝑦!
⋮
𝑦#

(𝑡$,𝑦$)

Solve: 𝑨#𝑨 𝒙 = 𝑨# 𝒃



Which function is not suitable for linear least squares?

A) 𝑦 = 𝑎 + 𝑏 𝑥 + 𝑐 𝑥# + 𝑑 𝑥%
B) 𝑦 = 𝑥 𝑎 + 𝑏 𝑥 + 𝑐 𝑥# + 𝑑 𝑥%
C) 𝑦 = 𝑎 sin 𝑥 + 𝑏/ cos 𝑥
D) 𝑦 = 𝑎 sin 𝑥 + 𝑥/ cos 𝑏𝑥
E) 𝑦 = 𝑎 𝑒&#' + 𝑏 𝑒#'



Computational Cost
𝑨#𝑨 𝒙 = 𝑨# 𝒃

• Compute 𝑨(𝑨: 𝑂 𝑚𝑛%

• Factorize 𝑨(𝑨: LU  → 𝑂 %
2𝑛

2 , Cholesky →𝑂 !
2𝑛

2

• Solve 𝑂 𝑛%
• Since 𝑚 > 𝑛 the overall cost is 𝑂 𝑚𝑛%



Short questions
Given the data in the 
table below, which of the 
plots shows the line of 
best fit in terms of least 
squares?

A) B)

C) D)



Short questions
Given the data in the table below, and the least squares model

𝑦 = 𝑐! + 𝑐% sin 𝑡𝜋 + 𝑐2 sin 𝑡𝜋/2 + 𝑐3 sin 𝑡𝜋/4

written in matrix form as

determine the entry 𝐴%2 of the matrix 𝑨.  
Note that indices start with 1.

A) −1.0
B) 1.0
C) − 0.7
D) 0.7
E) 0.0



Solving Linear Least Squares with 
SVD



𝑨 is a 𝑚×𝑛 matrix where  𝑚 > 𝑛
(more points to fit than coefficient to be determined)

Normal Equations: 𝑨!𝑨 𝒙 = 𝑨! 𝒃

• The solution 𝑨 𝒙 ≅ 𝒃 is unique if and only if 𝑟𝑎𝑛𝑘 𝐀 = 𝑛
(𝑨 is full column rank)

• 𝑟𝑎𝑛𝑘 𝐀 = 𝑛 → columns of 𝑨 are linearly independent → 𝑛 non-zero 
singular values → 𝑨! 𝑨 has only positive eigenvalues → 𝑨!𝑨 is a symmetric
and positive definite matrix → 𝑨!𝑨 is invertible

𝒙 = 𝑨!𝑨 "𝟏𝑨! 𝒃

• If 𝑟𝑎𝑛𝑘 𝐀 < 𝑛, then 𝑨 is rank-deficient, and solution of linear least squares 
problem is not unique.

What we have learned so far…



Condition number for Normal Equations
Finding the least square solution of 𝑨 𝒙 ≅ 𝒃 (where 𝑨 is full rank matrix) 
using the Normal Equations 

𝑨(𝑨 𝒙 = 𝑨( 𝒃

has some advantages, since we are solving a square system of linear equations 
with a symmetric matrix (and hence it is possible to use decompositions such 
as Cholesky Factorization)

However, the normal equations tend to worsen the conditioning of the 
matrix.

𝑐𝑜𝑛𝑑 𝑨(𝑨 = (𝑐𝑜𝑛𝑑 𝑨 )%

How can we solve the least square problem without squaring the 
condition of the matrix? 



SVD to solve linear least squares 
problems

We want to find the least square solution of 𝑨 𝒙 ≅ 𝒃, where 𝑨 = 𝑼 𝚺 𝑽𝑻

or better expressed in reduced form: 𝑨 = 𝑼5 𝚺𝑹 𝑽𝑻

𝑨 =
⋮ … ⋮
𝒖# … 𝒖$
⋮ … ⋮

𝜎#
⋱

𝜎%
0
⋮
0

… 𝐯#" …
⋮ ⋮ ⋮
… 𝐯%" …

𝑨 is a𝑚×𝑛 rectangular matrix where 𝑚 > 𝑛, and hence the SVD 
decomposition is given by:



Recall Reduced SVD

𝑨 = 𝑼4 𝚺𝑹 𝑽𝑻

𝑚×𝑛 𝑚×𝑛
𝑛×𝑛

𝑛×𝑛

𝑚 > 𝑛





SVD to solve linear least squares 
problems

We want to find the least square solution of 𝑨 𝒙 ≅ 𝒃, where 𝑨 = 𝑼$ 𝚺𝑹 𝑽𝑻

Normal equations: 𝑨"𝑨 𝒙 = 𝑨" 𝒃 ⟶ 𝑼& 𝚺𝑹 𝑽" " 𝑼& 𝚺𝑹 𝑽" 𝒙 = 𝑼& 𝚺𝑹 𝑽" "𝒃

𝑨 =
⋮ … ⋮
𝒖! … 𝒖A
⋮ … ⋮

𝜎!
⋱

𝜎A

… 𝐯!( …
⋮ ⋮ ⋮
… 𝐯A( …

𝑨 = 𝑼4 𝚺𝑹 𝑽𝑻

𝑽 𝚺𝑹𝑼&" 𝑼& 𝚺𝑹 𝑽" 𝒙 = 𝑽 𝚺𝑹𝑼&"𝒃

𝑽 𝚺𝑹 𝚺𝑹 𝑽"𝒙 = 𝑽 𝚺𝑹𝑼&"𝒃

𝚺𝑹 ( 𝑽"𝒙 = 𝚺𝑹𝑼&"𝒃 When can we take the inverse of the singular matrix?



𝚺𝑹 " 𝑽#𝒙 = 𝚺𝑹𝑼$#𝒃

1) Full rank matrix (𝜎$ ≠ 0 ∀𝑖): 

𝑽#𝒙 = 𝚺𝑹 %&𝑼$#𝒃
𝒙 = 𝑽 𝚺𝑹 "'𝑼$! 𝒃

Unique solution:

𝑛×𝑛 𝑛×𝑛 𝑛×𝑚
𝑚×1𝑛×1

rank 𝑨 = 𝑛

2) Rank deficient matrix ( rank 𝑨 = 𝑟 < 𝑛 )

Solution is not unique!!

Find solution 𝒙 such thatmin
𝒙
𝜙 𝒙 = 𝒃 − 𝑨 𝒙 "

"

and also

𝚺𝑹 " 𝑽#𝒙 = 𝚺𝑹𝑼$#𝒃

min
𝒙

𝒙 𝟐



2) Rank deficient matrix (continue)

Change of variables: Set 𝑽#𝒙 = 𝒚 and then solve 𝚺𝑹 𝒚 = 𝑼$#𝒃 for the variable 𝒚

𝜎#
⋱

𝜎)
0

⋱
0

𝑦#
⋮
𝑦)
𝑦)*#
⋮
𝑦%

=

𝒖#"𝒃
⋮

𝒖)"𝒃
𝒖)*#" 𝒃
⋮

𝒖%"𝒃

𝑦+ =
𝒖+"𝒃
𝜎+

𝑖 = 1,2, … , 𝑟

What do we do when 𝑖 > 𝑟? 
Which choice of 𝑦+ will minimize 

𝒙 𝟐 = 𝑽 𝒚 𝟐?

𝑦+ = 0, 𝑖 = 𝑟 + 1,… , 𝑛Set

We want to find the solution 𝒙 that satisfies 𝚺𝑹 " 𝑽#𝒙 = 𝚺𝑹𝑼$#𝒃 and also satisfies 
min
𝒙

𝒙 𝟐

Evaluate 

𝒙 = 𝑽𝒚 =
⋮ … ⋮
𝒗& … 𝒗)
⋮ … ⋮

𝑦&
𝑦"
⋮
𝑦)

𝒙 =9
*+&

)

𝑦* 𝒗𝒊 = 9
*+&
-!./

)
(𝒖*#𝒃)
𝜎*

𝒗𝒊



Solving Least Squares Problem with SVD 
(summary)

• Find 𝒙 that satisfies min
𝒙

𝒃 − 𝑨 𝒙 )
)

• Find 𝒚 that satisfiesmin
𝒚

𝚺𝑹 𝒚 − 𝑼$#𝒃 "
"

• Propose 𝒚 that is solution of 𝚺𝑹 𝒚 = 𝑼5(𝒃

• Evaluate: 𝒛 = 𝑼5(𝒃

• Set:  𝑦$ = h
O"
P"
, if 𝜎$ ≠ 0

0, otherwise
𝑖 = 1,… , 𝑛

• Then compute 𝒙 = 𝑽 𝒚

Cost:

𝑚 𝑛

𝑛

𝑛#

Cost of SVD:
𝑂(𝑚 𝑛#)



• If 𝜎$≠ 0 for ∀𝑖 = 1,… , 𝑛, then the solution 𝒚 = 𝑽 𝚺𝑹 Q!𝑼5( 𝒃 is 
unique (and not a “choice”). 

• If at least one of the singular values is zero, then the proposed solution 𝒚 is 
the one with the smallest 2-norm ( 𝒚 % is minimal ) that minimizes the 
2-norm of the residual 𝚺𝑹 𝒚 − 𝑼5(𝒃 %

• Since 𝒙 % = 𝑽 𝒚 %= 𝒚 %, then the solution 𝒙 is also the one with 
the smallest 2-norm ( 𝒙 % is minimal ) for all possible 𝒙 for which 
𝑨𝒙 − 𝒃 % is minimal.

Solving Least Squares Problem with SVD 
(summary)



Solve 𝑨 𝒙 ≅ 𝒃 or 𝑼> 𝚺𝑹𝑽𝑻𝒙 ≅ 𝒃

𝒙 ≅ 𝑽 𝚺𝑹 A 𝑼>B 𝒃

Solving Least Squares Problem with SVD 
(summary)



Consider solving the least squares problem 𝑨 𝒙 ≅ 𝒃, where the singular value decomposition of 
the matrix 𝑨 = 𝑼 𝚺 𝑽𝑻𝒙 is:

Determine 𝒃 − 𝑨 𝒙 (

Example:



Example
Suppose you have 𝑨 = 𝑼 𝚺 𝑽𝑻𝒙 calculated. What is the cost of solving

min
𝒙

𝒃 − 𝑨 𝒙 %
% ?

A) 𝑂(𝑛)
B) 𝑂( 𝑛%)
C) 𝑂(𝑚𝑛)
D) 𝑂 𝑚
E) 𝑂( 𝑚%)


