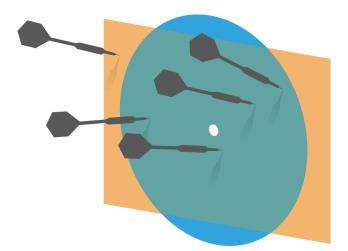
Probability and Statistics for Computer Science



Who discovered this?

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

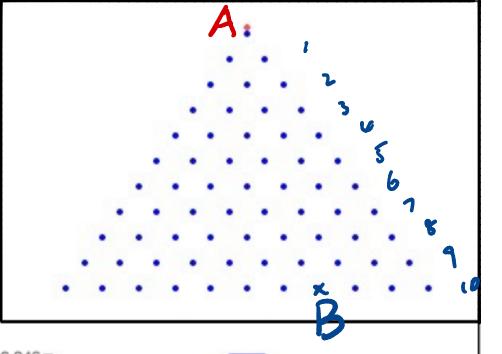
Credit: wikipedia

Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 09.24.2020

what is the number?

 $(P+q)^{n} = \sum_{k=0}^{n} a_{k} p^{k} q^{n-k}$ $a_{k} = ? \begin{pmatrix} n \\ k \end{pmatrix}$ 4 m = (1 / 1 / 1 p + 9 = 1the n $\Rightarrow \frac{n}{2} a_{k} p_{2}^{k} q_{k} = 1$

How many parts that lead A>B?



 $\binom{10}{7} = \binom{10}{3}$

Last time

Random Variable (R.V.) * Review of expectations * Markov's Inequality Mebyshev's Inequality * The weak law of large numbers

Proof of Weak law of large numbers

* Apply Chebyshev's inequality $P(|\overline{\mathbf{X}} - E[\overline{\mathbf{X}}]| \ge \epsilon) \le \frac{var[\mathbf{X}]}{\epsilon^2}$ * Substitute $E[\overline{\mathbf{X}}] = E[X]$ and $var[\overline{\mathbf{X}}] = \frac{var[X]}{N}$ $P(|\overline{\mathbf{X}} - E[\mathbf{X}]| \ge \epsilon) \le \frac{var[\mathbf{X}]}{N\epsilon^2} \xrightarrow[N \to \infty]{} \mathbf{0}$ $\lim_{N \to \infty} P(|\overline{\mathbf{X}} - E[X]| \ge \epsilon) = 0$

Applications of the Weak law of large numbers

* The law of large numbers *justifies using simulations* (instead of calculation) to estimate the expected values of random variables

$$\lim_{N \to \infty} P(|\overline{\mathbf{X}} - E[X]| \ge \epsilon) = 0$$

* The law of large numbers also *justifies using histogram* of large random samples to approximate the probability distribution function P(x), see proof on Pg. 353 of the textbook by DeGroot, et al.

Histogram of large random IID samples approximates the probability distribution

- * The law of large numbers justifies using histograms to approximate the probability distribution. Given N IID random variables X₁,
 - ..., X_N

* According to the law of large numbers

Objectives

Bernoulli Distribution Bernaull: Binomial Distribution trials Geometric Distribution Dispibution Uniform Discrete Continuous Random Variable

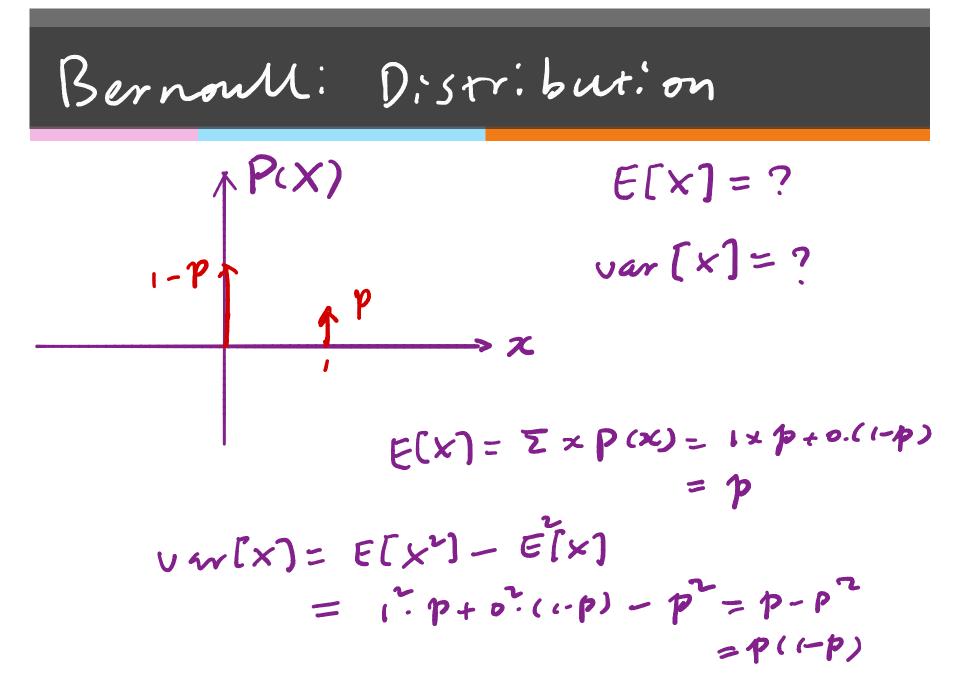
Random variables

A random variable maps Numbers, So (X) all outcomes LO (w) Bernonli: it's a function!! p (+*.1)= Possible Random Rane Variable Values ~@ w is tail → @ w is head **(**(w)

Bernoulli Random Variable

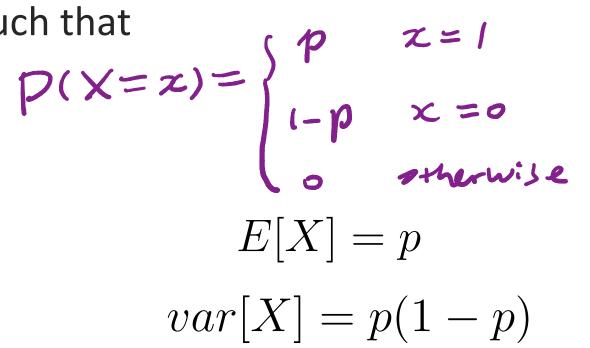
 $X(w) = \begin{cases} 1 \quad co = event A \rightarrow Head \\ 0 \quad w = orherwise \rightarrow Tail \end{cases}$ P(A) = ? pP(X=x)

Bernoulli Distribution P(X) E[x] = ? var [x] = ? $E(x) = \Sigma x P(x)$ = 10p+0. (1-p)=p var [x] = E[x]-E[x] $= \sum x^2 p \cdot x = p^2$ $= i^{2} p + o^{2} (+p) - p^{2} = p - p^{2} = p(+p)$



Bernoulli distribution

* A random variable X is **Bernoulli** if it takes on two values 0 and 1 such that T = I



Jacob Bernoulli (1654-1705) Credit: wikipedia

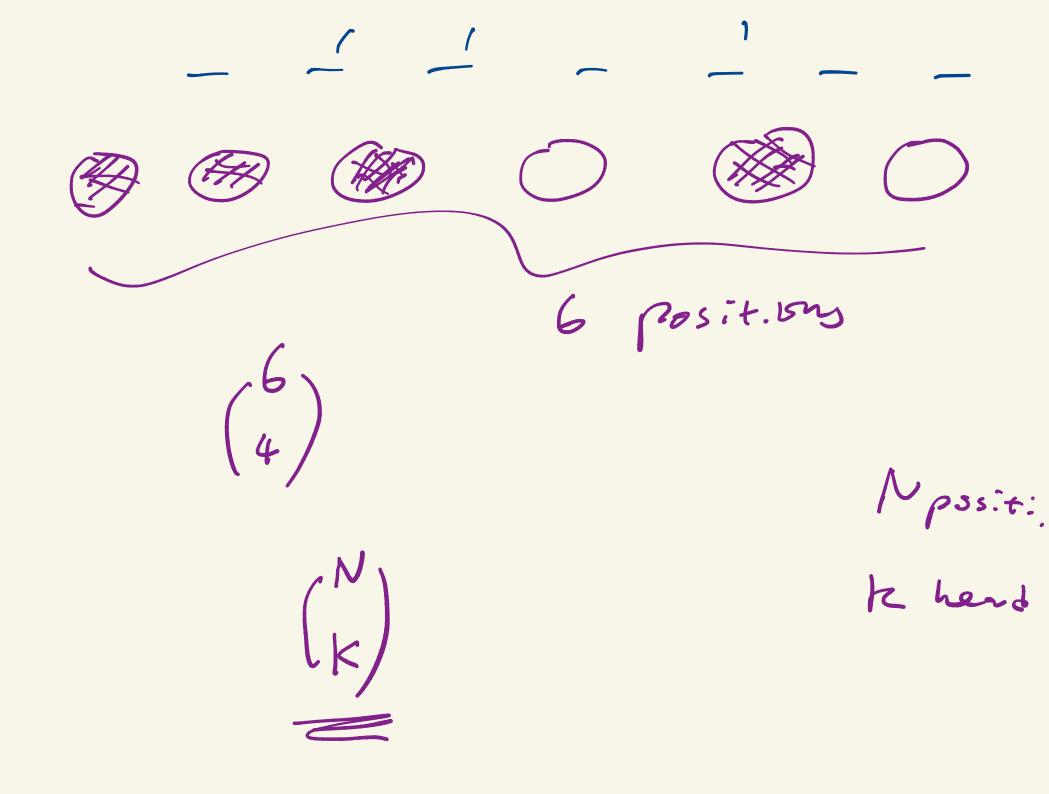
Bernoulli distribution

* Examples

- * Tossing a biased (or fair) coin
- Making a free throw
- Rolling a six-sided die and checking if it shows 6
- * Any indicator function of a random variable $I_{A} = \begin{cases} I & \text{ from A hypens} \\ O & \text{ otherw:se} \\ P(A) = p \end{cases}$ $E[I_{A}] = I \times P(A) + O \times (I - P(B))$ = P(From A)

Binomial Distribution Binomial RV Xs is the sum of N independent Bernoulli RVs $X_{S} = \sum_{i=1}^{N} X_{i} (\omega) = \begin{cases} 1 \\ 0 \\ 0 \end{cases}$ = crent w = other Range of Xs is? [0, N]

Binomial Distribution Binomial RV Xs is the sum of N independent Bernoulli RVs - Tors N times a biased coin, how many heads? k $P(X_{s}=k_{e}) = ? (N) (k_{e}) (k_{e$



Expectations of Binomial distribution

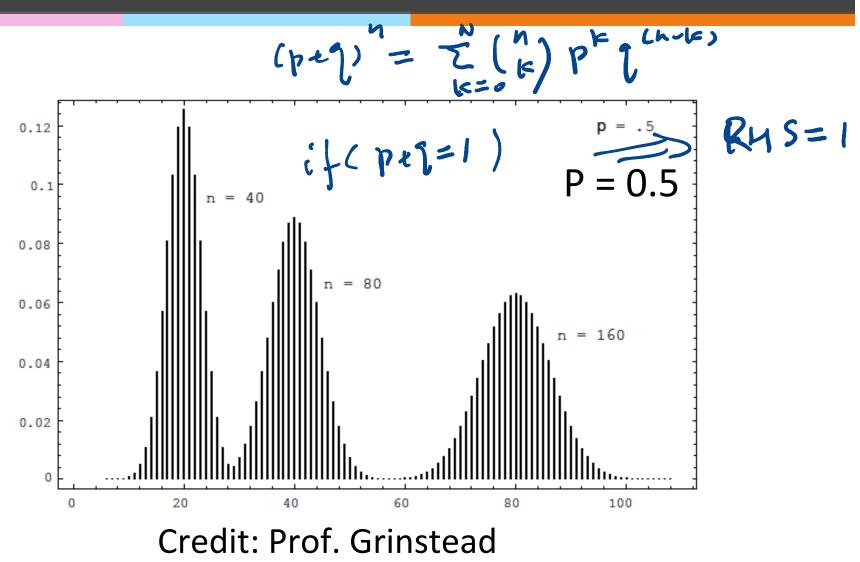
* A discrete random variable X is binomial if $P(X = k) = \binom{N}{k} p^k (1 - p)^{N-k} \quad for \ integer \ 0 \le k \le N$ with E[X] = Np & var[X] = Np(1-p) $F(x) = \sum x P(x)$ $= \sum k P(k)$ $u_{r}(x) = E[(x - E(x))] = E(x - ...) p(x - y)$

 $X_{s} = \sum_{i=1}^{N} X_{i}$ $E[X_{s}] = E\left(\sum_{i=1}^{N} x_{i}\right)$ $= \sum_{i=1}^{N} E[x_i]$ 2=1 = ジヤ - N.P

Xi iid. ESKél = E[X] Bernoutli RU

 $\left(v_{m} \left[x + T \right] = v_{m} \left[v_{n} \left[x + T \right] \right] + \frac{v_{m} \left[x + T \right]}{c_{m} \left[x + T \right]} = \frac{v_{m} \left[v_{n} \left[x + T \right] \right]}{c_{m} \left[x + T \right]} + \frac{v_{m} \left[x + T \right]}{c_{m} \left[x + T \right]} + \frac{v$ Vm[Xs] X: me:: d Rv. $= v m [ZX_i]$ $= \sum_{i} v \operatorname{enr}[x_i]$ identical independent $= N \cdot p(1 - p)$ Bernoull: indert I unconcluted ver[x;] = p(2p)

Binomial distribution



Binomial distribution: die example

* Let X be the number of sixes in $\beta 6$ rolls of a fair six-sided die. What is P(X=k) for k =5, 6, 7 N=36 $P = \frac{1}{6}$ $p(X=k) = {\binom{36}{k}} \cdot p^k (1-\frac{1}{6})^{36-k}$

* Calculate E[X] and var[X] $E[X] = N \cdot p = 36 \times 4 = 6$ $var[X] = N \cdot p(1 - p) = 36 \times 4 \times 5 = 5$

Geometric Distribution

P(cors 1 +ine) = p H p(2+ines)=(1-p).p P' $)=(1-p)^2p$ $\sim N$ TH TTH 7-7: - ~ = FM K time to see a H $P(k + imes) = (1-p)^{n-1}p$

k >1

Geometric distribution

* A discrete random variable X is geometric if

$$P(X = k) = (1 - p)^{k - 1} p \qquad k \ge 1$$

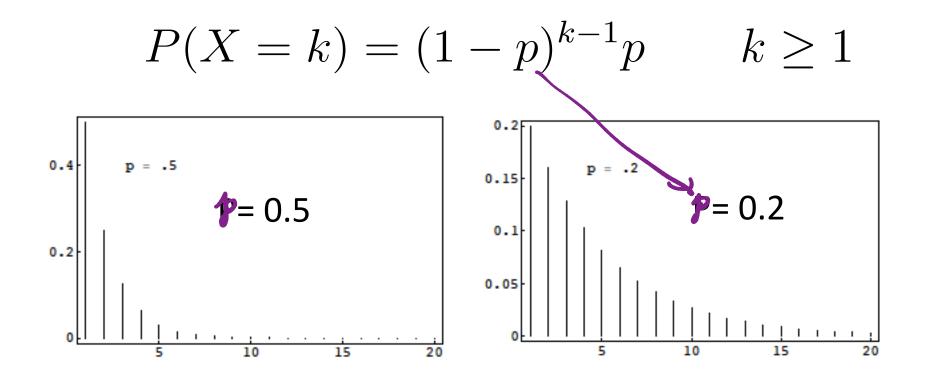
H, TH, TTH, TTTH, TTTTH, TTTTH, ...

Expected value and variance

$$E[X] = \frac{1}{p} \quad \& \quad var[X] = \frac{1-p}{p^2}$$

$$\varepsilon(x^2)$$

Geometric distribution



Credit: Prof. Grinstead

Geometric distribution

Examples:

- How many rolls of a six-sided die will it take to see the first 6?
- * How many Bernoulli trials must be done before the first 1?
- * How many experiments needed to have the first success?
- # Plays an important role in the theory of queues

$$E[X] = \sum_{k=1}^{\infty} k(1-p)^{k-1}p$$

$$= \Pr \sum_{k=1}^{\infty} k(1-p)^{k-1}p$$

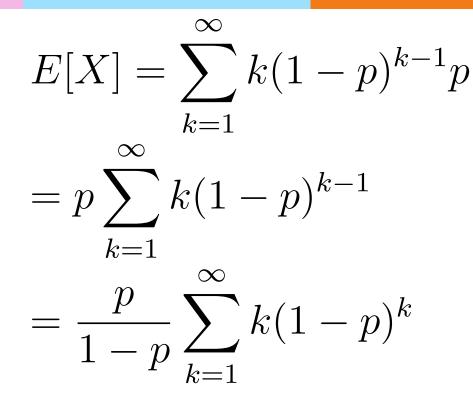
$$= \Pr \sum_{k=1}^{\infty} k(1-p)^{k}$$

$$= \frac{\Pr}{1-p} \sum_{k=1}^{\infty} k(1-p)^{k}$$

$$\sum_{n=1}^{\infty} n x^{n} = \frac{x}{(1-x)^{n}}$$

シー= こ エア(ス) なり(ス) なり(ス) なり(ス) なり(ス) なり(ス)

$$E[X] = \sum_{k=1}^{\infty} k(1-p)^{k-1}p$$
$$= p \sum_{k=1}^{\infty} k(1-p)^{k-1}$$



$$E[X] = \sum_{k=1}^{\infty} k(1-p)^{k-1}p$$
$$= p \sum_{k=1}^{\infty} k(1-p)^{k-1}$$
$$= \frac{p}{1-p} \sum_{k=1}^{\infty} k(1-p)^{k}$$

* For we have

this power series:

n=1

*

$$\begin{split} E[X] &= \sum_{k=1}^{\infty} k(1-p)^{k-1}p \\ &= p \sum_{k=1}^{\infty} k(1-p)^{k-1} \\ &= \frac{p}{1-p} \sum_{k=1}^{\infty} k(1-p)^k = \underbrace{p}_{\text{true}} \cdot \underbrace{p}_{\text{true}} = \underbrace{p}_{\text{p}} \\ \end{split}$$
 For we have this power series:
$$\sum_{n=1}^{\infty} nx^n = \frac{x}{(1-x)^2}; \quad |x| < 1 \end{split}$$

Derivation of the power series

$$S(x) = \sum_{n=1}^{\infty} nx^n = \frac{x}{(1-x)^2}; \quad |x| < 1$$

Proof:
$$\frac{S(x)}{x} = \sum_{n=1}^{\infty} nx^{n-1}; \quad \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}; \quad |x| < 1$$

$$\int_0^x \frac{S(t)}{t} = \sum_{n=1}^{\infty} x^n = x \cdot \frac{1}{1-x} = \frac{x}{1-x}$$

$$\frac{S(x)}{x} = (\frac{x}{1-x})' \qquad \text{Resc. Therefore, so the set of the se$$

Geometric distribution: die example

* Let X be the number of rolls of a fair six-sided die needed to see the first 6. What is P(X = k)for k = 1, 2? p = 2P(X=1) = p' = 2 $P(X=2) = (1-p)p = \frac{2}{5} \times \frac{1}{5} = \frac{5}{5}$

** Calculate E[X] and var[X] $\mathcal{E}[X] = \frac{1}{p} = \frac{1}{2} = 6$ $E[X] = \frac{1}{p} \& var[X] = \frac{1-p}{p^2} \qquad var[X] = \frac{1-p}{p^2} =$

Betting brainteaser

- What would you rather bet on?
 - How many rolls of a fair six-sided die will it take to see the first 6?
 - How many sixes will appear in 36 rolls of a fair six-sided die?

Multinomial distribution

** A discrete random variable X is Multinomial if $P(X_1 = n_1, X_2 = n_2, ..., X_k = n_k) = \frac{N!}{n_1! n_2! ... n_k!} p_1^{n_1} p_2^{n_2} ... p_k^{n_k}$

where
$$N = n_1 + n_2 + ... + n_k$$

* The event of throwing N times the k-sided die to see the probability of getting $n_1 X_1$, $n_2 X_{2}$, $n_3 X_3$... $n_k X_k$

Multinomial distribution

** A discrete random variable X is Multinomial if $P(X_1 = n_1, X_2 = n_2, ..., X_k = n_k) = \frac{N!}{n_1! n_2! ... n_k!} p_1^{n_1} p_2^{n_2} ... p_k^{n_k}$

where
$$N = n_1 + n_2 + ... + n_k$$

* The event of throwing k-sided die to see the probability of getting $n_1 X_1$, $n_2 X_2$, $n_3 X_3$...

Multinomial distribution

Examples

- If we roll a six-sided die N times, how many of each value will we see?
- What are the counts of N independent and identical distributed trials?
- * This is very widely used in genetics

rend off-line

Multinomial distribution: die example

What is the probability of seeing 1 one, 2 twos, 3 threes, 4 fours, 5 fives and 0 sixes in 15 rolls of a fair sixsided die?

golve off-line

Discrete uniform distribution

* A discrete random variable X is uniform if it takes k different values and $\chi(\omega) = \int_{\chi_{i}}^{\chi_{i}} \chi_{i}$

$$P(X = x_i) = \frac{1}{k}$$
 For all x_i that X can take

For example:

- Rolling a fair k-sided die
- * Tossing a fair coin (k=2)

Discrete uniform distribution

Expectation of a discrete random variable X that takes k different values uniformly

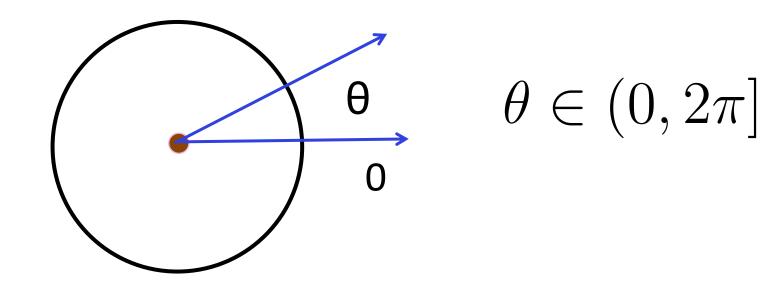
$$E[X] = \frac{1}{k} \sum_{i=1}^{k} x_i$$

* Variance of a uniformly distributed random variable X.

$$var[X] = \frac{1}{k} \sum_{i=1}^{k} (x_i - E[X])^2$$

Example of a continuous random variable

* The spinner



* The sample space for all outcomes is not countable

Probability density function (pdf)

- * For a continuous random variable X, the probability that X=x is essentially zero for all (or most) x, so we can't define P(X = x)
- ** Instead, we define the **probability density function** (pdf) over an infinitesimally small interval dx, $p(x)dx = P(X \in [x, x + dx])$ ** For a < b $\int_{a}^{b} p(x)dx = P(X \in [a, b])$

Properties of the probability density function

p(x) resembles the probability function of discrete random variables in that

$$\# \quad p(x) \ge 0 \quad \text{ for all } x$$

* The probability of X taking all possible values is 1.

$$\int_{-\infty}^{\infty} p(x)dx = 1$$

Properties of the probability density function

- * p(x) differs from the probability distribution function for a discrete random variable in that
 - ** p(x) is not the probability that X = x** p(x) can exceed 1

Probability density function: spinner

Suppose the spinner has equal chance stopping at any position. What's the pdf of the angle θ of the spin position?

2π

$$p(\theta) = \begin{cases} c & if \ \theta \in (0, 2\pi] \\ 0 & otherwise \end{cases}$$

For this function to be a pdf,

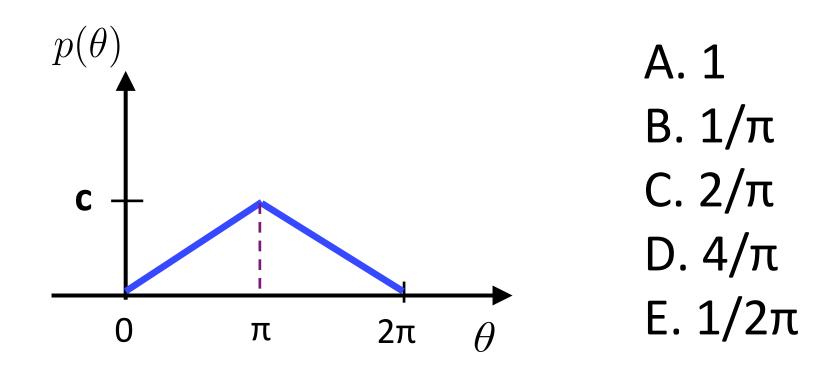
Then
$$\int_{-\infty}^{\infty} p(\theta) d\theta = 1$$

Probability density function: spinner

What the probability that the spin angle θ is within $\left[\frac{\pi}{12}, \frac{\pi}{7}\right]$?

Q: Probability density function: spinner

* What is the constant **c** given the spin angle θ has the following pdf?



Expectation of continuous variables

- * Expected value of a continuous random variable X $E[X] = \int_{-\infty}^{\infty} x p(x) dx$
- ***** Expected value of function of continuous random variable Y = f(X)

$$E[Y] = E[f(X)] = \int_{-\infty}^{\infty} f(x)p(x)dx$$

Probability density function: spinner

* Given the probability density of the spin angle θ

$$p(\theta) = \begin{cases} \frac{1}{2\pi} & if \ \theta \in (0, 2\pi] \\ 0 & otherwise \end{cases}$$

* The expected value of spin angle is

$$E[\theta] = \int_{-\infty}^{\infty} \theta p(\theta) d\theta$$

Properties of expectation of continuous random variables

* The linearity of expected value is true for continuous random variables.

* And the other properties that we derived for variance and covariance also hold for continuous random variable

Suppose a continuous variable has pdf

$$p(x) = \begin{cases} 2(1-x) & x \in [0,1] \\ 0 & otherwise \end{cases}$$

What is E[X]?

A. 1/2 B. 1/3 C. 1/4

D. 1 E. 2/3 $E[X] = \int_{-\infty}^{\infty} xp(x)dx$

Variance of a continuous variable

Assignments

- Read Chapter 5 of the textbook
- ** Next time: more classic known probability distributions

Additional References

- * Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"
- Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See You!

