Probability and Statistics for Computer Science

Who discovered this?

$$
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

Credit: wikipedia

Last time

粦 Random Variable
粦 Review with questions
粦 The weak law of large numbers

Proof of Weak law of large numbers

粦 Apply Chebyshev's inequality

$$
P(|\overline{\mathbf{X}}-E[\overline{\mathbf{X}}]| \geq \epsilon) \leq \frac{\operatorname{var}[\overline{\mathbf{X}}]}{\epsilon^{2}}
$$

粦 Substitute $E[\overline{\mathbf{X}}]=E[X]$ and $\epsilon^{2} \operatorname{var}[\overline{\mathbf{X}}]=\frac{\operatorname{var}[X]}{N}$

$$
P(|\overline{\mathbf{X}}-E[\mathbf{X}]| \geq \epsilon) \leq \frac{\operatorname{var}[\mathbf{X}]}{N \epsilon^{2}} \xrightarrow[N \rightarrow \infty]{ } 0
$$

$$
\lim _{N \rightarrow \infty} P(|\overline{\mathbf{X}}-E[X]| \geq \epsilon)=0
$$

Applications of the Weak law of large numbers

Applications of the Weak law of large numbers

粦 The law of large numbers justifies using simulations (instead of calculation) to estimate the expected values of random variables

$$
\lim _{N \rightarrow \infty} P(|\overline{\mathbf{X}}-E[X]| \geq \epsilon)=0
$$

粦 The law of large numbers also justifies using histogram of large random samples to approximate the probability distribution function $P(x)$, see proof on
Pg. 353 of the textbook by DeGroot, et al.

Histogram of large random IID samples approximates the probability distribution

粦 The law of large numbers justifies using histograms to approximate the probability distribution．Given \boldsymbol{N} IID random variables X_{l} ， ．．．，X_{N}
粦 According to the law of large numbers

$$
\overline{\mathbf{Y}}=\frac{\sum_{i=1}^{N} Y_{i}}{N} \xrightarrow{N \rightarrow \infty} E\left[Y_{i}\right]
$$

粦 As we know for indicator function

$$
E\left[Y_{i}\right]=P\left(c_{1} \leq X_{i}<c_{2}\right)=P\left(c_{1} \leq X<c_{2}\right)
$$

Simulation of the sum of two-dice

䊩 http://www.randomservices.org/ random/apps/DiceExperiment.html

Probability using the property of Independence: Airline overbooking

粦 An airline has a flight with s seats. They always sell $\mathbf{t}(\mathbf{t}>\mathbf{s})$ tickets for this flight. If ticket holders show up independently with probability \mathbf{p}, what is the probability that the flight is overbooked?
$\mathrm{P}($ overbooked $)=\sum_{u=s+1}^{t} C(t, u) p^{u}(1-p)^{t-u}$

Simulation of airline overbooking

粦 An airline has a flight with $\mathbf{7}$ seats．They always sell 12 tickets for this flight．If ticket holders show up independently with probability \mathbf{p} ，estimate the following values
粦 Expected value of the number of ticket holders who show up
粦 Probability that the flight being overbooked
粦 Expected value of the number of ticket holders who can＇t fly due to the flight is overbooked．

Conditional expectation

Expected value of X conditioned on event A :

$$
E[X \mid A]=\sum_{x \in D(X)} x P(X=x \mid A)
$$

粦 Expected value of the number of ticketholders not flying

$$
E[\text { NF|overbooked }]=\sum_{u=s+1}^{t}(u-s) \frac{\binom{t}{u} p^{u}(1-p)^{t-u}}{\sum_{v=s+1}^{t}\binom{t}{v} p^{v}(1-p)^{t-v}}
$$

Simulate the arrival

Expected value of the number of ticket holders who show up
$n t=100000, t=12, s=7, p=0.1,0.2, \ldots 1.0$
\longrightarrow Num of trials (nt)

Num of tickets (t)

We generate a matrix of random numbers from uniform distribution in [0,1],
Any number < p is considered an arrival

Simulate the arrival

Expected value of the number of ticket

 $n t=100000, t=12$,$s=7, p=0.1,0.2, \ldots$
1.0

Simulate the expected probability of overbooking

粦 Expected probability of the flight being overbooked $t=12, s=7, p=0.1,0.2, \ldots 1.0$

Expected probability is equal to the expected value of indicator function. Whenever we have Num of arrival > Num of seats, we mark it with an indicator function. Then estimate with the sample mean of indicator functions.

Simulate the expected probability of overbooking

Expected probability of the flight being overbooked

$n t=100000$,
$t=12, s=7$,
$p=0.1,0.2, \ldots 1.0$

Expected probability of flight being overbooked

Simulate the expected value of the number of grounded ticket holders given overbooked

粦 Expected value of the number of ticket holders who can't fly due to the flight being overbooked
$N t=200000$,
$t=12, s=7$,
$p=0.1,0.2, \ldots 1.0$

Expected value of the number of ticket holder not flying given overbooke

Content

粦Continuous Random Variable
粦 Important known discrete probability distributions

Example of a continuous random variable

粦 The spinner

$$
\theta \in(0,2 \pi]
$$

粦 The sample space for all outcomes is not countable

Probability density function（pdf）

䊩 For a continuous random variable X ，the probability that $X=x$ is essentially zero for all （or most）x ，so we can＇t define $P(X=x)$

类 Instead，we define the probability density function（pdf）over an infinitesimally small interval $d x, p(x) d x=P(X \in[x, x+d x])$
粦 For $a<b$

$$
\int_{a}^{b} p(x) d x=P(X \in[a, b])
$$

Properties of the probability density function

粦 $p(x)$ resembles the probability function of discrete random variables in that
米 $p(x) \geq 0 \quad$ for all x
粦 The probability of X taking all possible values is 1.

$$
\int_{-\infty}^{\infty} p(x) d x=1
$$

Properties of the probability density function

粦 $p(x)$ differs from the probability distribution function for a discrete random variable in that
粦 $p(x)$ is not the probability that $X=x$米 $p(x)$ can exceed 1

Probability density function: spinner

粦 Suppose the spinner has equal chance stopping at any position. What's the pdf of the angle θ of the spin position?

$$
p(\theta)=\left\{\begin{array}{cc}
c & \text { if } \theta \in(0,2 \pi] \\
0 & \text { otherwise }
\end{array}\right.
$$

For this function to be a pdf,
Then

$$
\int_{-\infty}^{\infty} p(\theta) d \theta=1
$$

Probability density function: spinner

What the probability that the spin angle θ is within $\left[\frac{\pi}{12}, \frac{\pi}{7}\right]$?

Q: Probability density function: spinner

粦 What is the constant c given the spin angle θ has the following pdf?

A. 1
B. $1 / \pi$
C. $2 / \pi$
D. $4 / \pi$
E. $1 / 2 \pi$

Expectation of continuous variables

粦 Expected value of a continuous random variable $X \quad E[X]=\int_{-\infty}^{\infty} x p(x) d x{ }^{\text {weight }}$
䊩 Expected value of function of continuous random variable $Y=f(X)$

$$
E[Y]=E[f(X)]=\int_{-\infty}^{\infty} f(x) p(x) d x
$$

Probability density function: spinner

Given the probability density of the spin angle θ

$$
p(\theta)=\left\{\begin{array}{cc}
\frac{1}{2 \pi} & \text { if } \theta \in(0,2 \pi] \\
0 & \text { otherwise }
\end{array}\right.
$$

粦 The expected value of spin angle is

$$
E[\theta]=\int_{-\infty}^{\infty} \theta p(\theta) d \theta
$$

Properties of expectation of continuous random variables

粦 The linearity of expected value is true for continuous random variables.

粦 And the other properties that we derived for variance and covariance also hold for continuous random variable

粦 Suppose a continuous variable has pdf

$$
p(x)=\left\{\begin{array}{cc}
2(1-x) & x \in[0,1] \\
0 & \text { otherwise }
\end{array}\right.
$$

What is $\mathrm{E}[\mathrm{X}]$?
A. $1 / 2$
B. $1 / 3$
C. 1/4
D. 1 E. 2/3

$$
E[X]=\int_{-\infty}^{\infty} x p(x) d x
$$

Variance of a continuous variable

Content

粦Continuous Random Variable
業 Important known discrete probability distributions

The usefulness of probability distributions

粦 Many common processes generate data with probability distributions that belong to families with known properties

米 Even if the data are not distributed according to a known probability distribution, it is sometimes useful in practice to approximate with known distribution.

The classic discrete distributions

Discrete uniform distribution

A discrete random variable X is uniform if it takes k different values and

$$
P\left(X=x_{i}\right)=\frac{1}{k} \quad \text { For all } x_{i} \text { that } X \text { can take }
$$

For example:
粦 Rolling a fair k-sided die
業 Tossing a fair coin ($\mathrm{k}=2$)

Discrete uniform distribution

Expectation of a discrete random variable X that takes k different values uniformly

$$
E[X]=\frac{1}{k} \sum_{i=1}^{k} x_{i}
$$

Variance of a uniformly distributed random variable X.

$$
\operatorname{var}[X]=\frac{1}{k} \sum_{i=1}^{k}\left(x_{i}-E[X]\right)^{2}
$$

Bernoulli distribution

A random variable X is Bernoulli if it takes on two

 values 0 and 1 such that

$$
\begin{gathered}
E[X]=p \\
\operatorname{var}[X]=p(1-p)
\end{gathered}
$$

Jacob Bernoulli (1654-1705)
Credit: wikipedia

Bernoulli distribution

Examples

粦 Tossing a biased（or fair）coin
粦 Making a free throw
粦 Rolling a six－sided die and checking if it shows 6
粦 Any indicator function of a random variable

Binomial distribution

Remember Galton Board?

http://www.randomservices.org/ random/apps/
GaltonBoardExperiment.html

Remember the airline problem?

Binomial distribution

Binomial distribution

粦 A discrete random variable X is binomial if

$$
P(X=k)=\binom{N}{k} p^{k}(1-p)^{N-k} \quad \text { for integer } 0 \leq k \leq N
$$

with $E[X]=N p \quad \& \quad \operatorname{var}[X]=N p(1-p)$

Examples

粦 If we roll a six－sided die N times，how many sixes we will see
粦 If I attempt \mathbf{N} free throws，how many points will I score
粦 What is the sum of N independent and identically distributed Bernoulli trials？

Expectations of Binomial distribution

畨 A discrete random variable X is binomial if

$$
P(X=k)=\binom{N}{k} p^{k}(1-p)^{N-k} \quad \text { for integer } 0 \leq k \leq N
$$

with $E[X]=\underset{\uparrow}{N p} \quad \& \quad \operatorname{var}[X]=\underset{\uparrow}{N} p(1-p)$

Binomial distribution: die example

Let X be the number of sixes in 36 rolls of a fair six-sided die. What is $P(X=k)$ for $k=5,6,7$

类 Calculate $\mathrm{E}[\mathrm{X}]$ and $\operatorname{var}[\mathrm{X}]$

Geometric distribution

A discrete random variable X is geometric if

$$
P(X=k)=(1-p)^{k-1} p \quad k \geq 1
$$

H, TH, TTH, TTTH, TTTTH, TTTTTH,...

Expected value and variance

$$
E[X]=\frac{1}{p} \quad \& \quad \operatorname{var}[X]=\frac{1-p}{p^{2}}
$$

Geometric distribution

$$
P(X=k)=(1-p)^{k-1} p \quad k \geq 1
$$

Credit: Prof. Grinstead

Geometric distribution

Examples：

米 How many rolls of a six－sided die will it take to see the first 6？

粦 How many Bernoulli trials must be done before the first 1？

米 How many experiments needed to have the first success？

粦 Plays an important role in the theory of queues

Derivation of geometric expected value

$$
E[X]=\sum_{k=1}^{\infty} k(1-p)^{k-1} p
$$

Derivation of geometric expected value

$$
\begin{aligned}
& E[X]=\sum_{k=1}^{\infty} k(1-p)^{k-1} p \\
& =p \sum_{k=1}^{\infty} k(1-p)^{k-1}
\end{aligned}
$$

Derivation of geometric expected value

$$
\begin{aligned}
& E[X]=\sum_{k=1}^{\infty} k(1-p)^{k-1} p \\
& =p \sum_{k=1}^{\infty} k(1-p)^{k-1} \\
& =\frac{p}{1-p} \sum_{k=1}^{\infty} k(1-p)^{k}
\end{aligned}
$$

Derivation of geometric expected value

$$
\begin{aligned}
& E[X]=\sum_{k=1}^{\infty} k(1-p)^{k-1} p \\
& =p \sum_{k=1}^{\infty} k(1-p)^{k-1} \\
& =\frac{p}{1-p} \sum_{k=1}^{\infty} k(1-p)^{k}
\end{aligned}
$$

For we have
this power series:

Derivation of geometric expected value

$$
\begin{aligned}
& E[X]=\sum_{k=1}^{\infty} k(1-p)^{k-1} p \\
& =p \sum_{k=1}^{\infty} k(1-p)^{k-1} \\
& =\frac{p}{1-p} \sum_{k=1}^{\infty} k(1-p)^{k}
\end{aligned}
$$

For we have
this power series:

$$
\sum_{n=1}^{\infty} n x^{n}=\frac{x}{(1-x)^{2}} ; \quad|x|<1
$$

Derivation of geometric expected value

$$
\begin{aligned}
& E[X]=\sum_{k=1}^{\infty} k(1-p)^{k-1} p \\
& =p \sum_{k=1}^{\infty} k(1-p)^{k-1} \\
& =\frac{p}{1-p} \sum_{k=1}^{\infty} k(1-p)^{k} \\
& \text { eve } \quad \sum_{n=1}^{\infty} n x^{n}=\frac{x}{(1-x)^{2}} ; \quad|x|<1
\end{aligned}
$$

For we have
this power series:

Derivation of geometric expected value

$$
\begin{aligned}
& E[X]=\sum_{k=1}^{\infty} k(1-p)^{k-1} p \\
& =p \sum_{k=1}^{\infty} k(1-p)^{k-1} \\
& =\frac{p}{1-p} \sum_{k=1}^{\infty} k(1-p)^{k}=\frac{1}{p}
\end{aligned}
$$

For we have
this power series:

$$
\sum_{n=1}^{\infty} n x^{n}=\frac{x}{(1-x)^{2}} ; \quad|x|<1
$$

Derivation of the power series

$S(x)=\sum_{n=1}^{\infty} n x^{n}=\frac{x}{(1-x)^{2}} ; \quad|x|<1$
Proof: $\quad \frac{S(x)}{x}=\sum_{n=1}^{\infty} n x^{n-1} ; \sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x} ; \quad|x|<1$

$$
\int_{0}^{x} \frac{S(t)}{t}=\sum_{n=1}^{\infty} x^{n}=x \cdot \frac{1}{1-x}=\frac{x}{1-x}
$$

$$
\frac{S(x)}{x}=\left(\frac{x}{1-x}\right)^{\prime}
$$

$$
S(x)=\frac{x}{(1-x)^{2}}
$$

Geometric distribution: die example

粦 Let X be the number of rolls of a fair six-sided die needed to see the first 6 . What is $P(X=k)$ for $k=1$, 2 ?

粦 Calculate $\mathrm{E}[X]$ and $\operatorname{var}[X]$

$$
E[X]=\frac{1}{p} \quad \& \quad \operatorname{var}[X]=\frac{1-p}{p^{2}}
$$

Betting brainteaser

What would you rather bet on？
粦 How many rolls of a fair six－sided die will it take to see the first 6？
粦 How many sixes will appear in 36 rolls of a fair six－sided die？

粦 Why？

Multinomial distribution

䊩 A discrete random variable X is Multinomial if

$$
\begin{gathered}
P\left(X_{1}=n_{1}, X_{2}=n_{2}, \ldots, X_{k}=n_{k}\right)=\frac{N!}{n_{1}!n_{2}!\ldots n_{k}!} p_{1}^{n_{1}} p_{2}^{n_{2}} \ldots p_{k}^{n_{k}} \\
\text { where } N=n_{1}+n_{2}+\ldots+n_{k}
\end{gathered}
$$

The event of throwing N times the k -sided die to see the probability of getting $\mathrm{n}_{1} X_{1}, \mathrm{n}_{2} X_{2}, \mathrm{n}_{3}$ $X_{3} \ldots \mathrm{n}_{\mathrm{k}} X_{\mathrm{k}}$

Multinomial distribution

䊩 A discrete random variable X is Multinomial if

$$
\begin{gathered}
P\left(X_{1}=n_{1}, X_{2}=n_{2}, \ldots, X_{k}=n_{k}\right)=\frac{N!}{n_{1}!n_{2}!\ldots n_{k}!} p_{1}^{n_{1}} p_{2}^{n_{2} \ldots p_{k}^{n_{k}}} \\
\text { where } N=n_{1}+n_{2}+\ldots+n_{k}
\end{gathered}
$$

The event of throwing k-sided die to see the probability of getting $\mathrm{n}_{1} X_{1}, \mathrm{n}_{2} X_{2}, \mathrm{n}_{3} X_{3} \ldots$

ILLINOIS?
 $$
\frac{8!}{3!2!1!1!1!}
$$

Multinomial distribution

Examples

羊 If we roll a six－sided die N times，how many of each value will we see？
类 What are the counts of N independent and identical distributed trials？

並 This is very widely used in genetics

Multinomial distribution: die example

粦 What is the probability of seeing 1 one, 2 twos, 3 threes, 4 fours, 5 fives and 0 sixes in 15 rolls of a fair sixsided die?

Assignments

Read Chapter 5 of the textbook

Next time: more classic known probability distributions

Additional References

Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"

Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See You!

